K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 4 2019

\(x^2+2mx+m^2+2\left|x+m\right|+1< -2m^2+3m\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+1< -2m^2+3m\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Do \(\left|x+m\right|\ge0\Rightarrow\left(\left|x+m\right|+1\right)^2\ge1\)

\(\Rightarrow-2m^2+3m>1\Rightarrow-2m^2+3m-1>0\)

\(\Rightarrow\frac{1}{2}< m< 1\)

NV
1 tháng 3 2020

Để BPT \(f\left(x\right)>0\) vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m+2< 0\\\Delta'=m^2-3m\left(m+2\right)\le0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< -2\\m^2+3m\ge0\end{matrix}\right.\) \(\Rightarrow m\le-3\)

\(\Rightarrow\) Để BPT có nghiệm thì \(m>-3\)

1 tháng 3 2020

∆ sai kìa

NV
6 tháng 2 2020

Để BPT có nghiệm \(\Leftrightarrow\Delta>0\)

\(\Rightarrow\left(m+2\right)^2-4\left(3m^2+1\right)>0\)

\(\Leftrightarrow-11m^2+4m>0\Leftrightarrow0< m< \frac{4}{11}\)

25 tháng 2 2016

\(\left(m-1\right)x^2-2mx+3m-2>0\) (1)

- Nếu \(m=1\)   thì (1) có dạng \(-2x+1>0\)    nên có nghiệm \(x<\frac{1}{2}\)

- Nếu \(m\ne1\)   thì (1) là bất phương trình bậc 2 với \(a=m-1\)  và biệt thức \(\Delta'=-2m+5m-2\) 

Trong trường hợp \(\Delta'\ge0\)

ta kí hiệu 

\(x_1:=\frac{m-\sqrt{\Delta'}}{m-1}\)    ; \(x_2:=\frac{m+\sqrt{\Delta'}}{m-1}\)     \(d:=x_2-x_1=\frac{2\sqrt{\Delta'}}{m-1}\)

Lập bảng xét dấu ta được

+ Nếu \(m\le\frac{1}{2}\)   thì \(a<0\)    ; \(\Delta'\le0\)

nên (1) vô nghiệm

+ Nếu \(\frac{1}{2}\) <m< 1 thi a<0; \(\Delta'>0\)

\(d\ge0\) nên (1) \(\Leftrightarrow\) x<\(x_1\)  hoặc \(x_2\)<x

+ Nếu m>2 thì a>0; \(\Delta'<0\)

nên (1) có tập nghiệm T(1)=R.

Ta có kết luận :

* Khi \(m\le\frac{1}{2}\) thì (1) vô nghiệm

* Khi \(\frac{1}{2}\) <m<1 thì (1) có nghiệm

\(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\) <x<\(\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\)

* Khi m=1 thì (1) có nghiệm \(x<\frac{1}{2}\)

* Khi 1<m\(\le\) 2 thì (1) có tập nghiệm

T(1) = \(\left(-\infty;\frac{m-\sqrt{-2m^2+5m-2}}{m-1}\right)\cup\left(\frac{m+\sqrt{-2m^2+5m-2}}{m-1}\right);+\infty\)

* Khi m>2 thì (1) có nghiệm là mọi x\(\in R\)

19 tháng 3 2021

1.

\(2\left|x-m\right|+x^2+2>2mx\)

\(\Leftrightarrow\left(x-m\right)^2+2\left|x-m\right|-m^2+2>0\)

\(\Leftrightarrow t^2+2t-m^2+2>0\left(t=\left|x-m\right|\ge0\right)\)

\(\Leftrightarrow m^2< f\left(t\right)=t^2+2t+2\)

Yêu cầu bài toán thỏa mãn khi \(m^2< minf\left(t\right)=2\)

\(\Leftrightarrow-\sqrt{2}< m< 2\)

Vậy \(-\sqrt{2}< m< 2\)

19 tháng 3 2021

2.

\(x^2+2\left|x+m\right|+2mx+3m^2-3m+1< 0\)

\(\Leftrightarrow\left(x+m\right)^2+2\left|x+m\right|+2m^2-3m+1< 0\)

\(\Leftrightarrow\left(\left|x+m\right|+1\right)^2< -2m^2+3m\)

Ta có \(VT=\left(\left|x+m\right|+1\right)^2=\left(-\left|x+m\right|-1\right)^2\le\left(-1\right)^2=1\)

Yêu cầu bài toán thỏa mãn khi \(VP=-2m^2+3m>1\)

\(\Leftrightarrow2m^2-3m+1< 0\)

\(\Leftrightarrow\dfrac{1}{2}< m< 1\)

6 tháng 12 2020

Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)

Ko mất tính tổng quát, giả sử \(x_1=3x_2\)

Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)

Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)

\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)

Vậy ko tồn tại m thỏa mãn