K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 5 2021

Ta có :

 \(A\left(x\right)-B\left(x\right)=3x^3y^4-2xy^2-5xy-1-3x^3y^4+2xy^2+xy+4\)

\(=-4xy+3\)bậc 2 

\(A\left(x\right)+B\left(x\right)=3x^3y^4-2xy^2-5xy-1+3x^3y^4-2xy^2-xy-4\)

\(=6x^3y^4-4xy^2-6xy-5\)bậc 7 

10 tháng 4 2018

C= x2 y - \(\dfrac{1}{2}\)xy2 + \(\dfrac{1}{3}\)x2y +\(\dfrac{2}{3}\)xy2 + 1

C=(x2y + \(\dfrac{1}{3}\)x2y )+( - \(\dfrac{1}{2}\)xy2 +\(\dfrac{2}{3}\)xy2)+ 1

C=\(\dfrac{4}{3}\)x2y +\(\dfrac{1}{6}\)xy2+1

=>Bặc: 3

D= xy2z + 3xyz2 - \(\dfrac{1}{5}\)xy2z - \(\dfrac{1}{3}\)xyz2 - 2

D=(xy2z - \(\dfrac{1}{5}\)xy2z )+( 3xyz2 - \(\dfrac{1}{3}\)xyz2) - 2

D=\(\dfrac{4}{5}\)xy2z +\(\dfrac{8}{3}\)xyz2 - 2

=> Bậc :4

E = 3xy5 - x2y + 7xy - 3xy5 + 3x2y - \(\dfrac{1}{2}\)xy + 1

E=(3xy5- 3xy5) + (- x2y + 3x2y) + (7xy - \(\dfrac{1}{2}\)xy)+ 1

E= 2x2y + \(\dfrac{13}{2}\)xy + 1

=> Bậc: 3

K = 5x3 - 4x + 7x2 - 6x3 + 4x + 1

K= (5x3 - 6x3 ) + (- 4x + 4x) +1

K= -1x3 + 1

=>Bậc: 3

F = 12x3y2 - \(\dfrac{3}{7}\)x4y2 + 2xy3 - x3y2 + x4y2 - xy3 - 5

F=( 12x3y2 - x3y2) + (- \(\dfrac{3}{7}\)x4y2 + x4y2) + (2xy3 - xy3) -5

F=11x3y2 + \(\dfrac{4}{7}\)x4y2 + xy3 - 5

=> Bậc :6

CHÚC BN HỌC TỐT ^-^

23 tháng 7 2020

Bài làm:

Ta có: \(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)

\(A=3x^2y^3+3x^3y^2-5x^2\)

=> Bậc của đa thức A là 5

\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)

\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)

=> Bậc của đa thức B là 6

23 tháng 7 2020

\(A=15x^2y^3+7x^2-8x^3y^2-12x^2+11x^3y^2-12x^2y^3\)

\(A=3x^2y^3-5x^2+3x^3y^2\)

Xét bậc của từng hạng tử :

3x2y3 có bậc 5 

-5x2 có bậc 2

3x3y2 có bậc 5

=> Bậc của A là 5

\(B=3x^5y+\frac{1}{3}xy^4+\frac{3}{4}x^2y^3-\frac{1}{2}x^5y+2xy^4-x^2y^3\)

\(B=\frac{5}{2}x^5y+\frac{7}{3}xy^4-\frac{1}{4}x^2y^3\)

Xét bậc từng hạng tử

5/2 . x5y có bậc 6

7/3 xy4 có bậc 5

-1/4 x2y3 có bậc 5

=> Bậc của B là 6

8 tháng 8 2019

TL:

\(B=2x^2+y^2-2xy-2x+3\)

    \(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)

    \(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)

8 tháng 8 2019

\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)

Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)

a: \(M=x^2y^3+xy^2+2x^3+2.25-2x^2y^3+\dfrac{1}{2}xy^2-3x^2+\dfrac{1}{3}\)

\(=-x^2y^3+\dfrac{3}{2}xy^2-3x^2+2x^3+\dfrac{31}{12}\)

b: \(M=6x^3y^3-5x^2y+x^4y-1.5-\dfrac{2}{5}+5x^3y^3-x^4y+7x^2y\)

\(=11x^3y^3+2x^2y-\dfrac{19}{10}\)

9 tháng 4 2017

A=15x2y2+7x2-8x3y2-12x2+11x3y2-12x2y2

= (15x2y2-12x2y2)+(7x2-12x2)+(-8x3y2+11x3y2)

= 3x2y2-5x2+3x3y2

Bậc của đa thức A: 5

Hệ số cao nhất: 3

B= \(3x^5y+\dfrac{1}{3}xy^4+\dfrac{3}{4}x^2y^3-\dfrac{1}{2}x^5y+2xy^4-x^2y^3\)

=\(\left(3x^5y-\dfrac{1}{2}x^5y\right)+\left(\dfrac{1}{3}xy^4+2xy^4\right)+\left(\dfrac{3}{4}x^2y^3-x^2y^3\right)\)

= 2,5x5y+\(\dfrac{7}{3}\)xy4-\(\dfrac{1}{4}\)x2y3

Bậc của đa thức B: 6

Hệ số cao nhất : \(\dfrac{7}{3}\)