Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/a) Ta có: \(A=x^4+\left(y-2\right)^2-8\ge-8\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=0\\y-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=0\\y=2\end{cases}}\)
Vậy GTNN của A = -8 khi x=0, y=2.
b) Ta có: \(B=|x-3|+|x-7|\)
\(=|x-3|+|7-x|\ge|x-3+7-x|=4\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge3\\x\le7\end{cases}}\Rightarrow3\le x\le7\)
Vậy GTNN của B = 4 khi \(3\le x\le7\)
2/ a) Ta có: \(xy+3x-7y=21\Rightarrow xy+3x-7y-21=0\)
\(\Rightarrow x\left(y+3\right)-7\left(y+3\right)=0\Rightarrow\left(x-7\right)\left(y+3\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=7\\y=-3\end{cases}}\)
b) Ta có: \(\frac{x+3}{y+5}=\frac{3}{5}\)và \(x+y=16\)
Áp dụng tính chất bằng nhau của dãy tỉ số, ta có:
\(\frac{x+3}{y+5}=\frac{3}{5}\Rightarrow\frac{x+3}{3}=\frac{y+5}{5}=\frac{x+y+8}{8}=\frac{16+8}{8}=\frac{24}{8}=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x+3}{3}=3\Rightarrow x+3=9\Rightarrow x=6\\\frac{y+5}{5}=3\Rightarrow y+5=15\Rightarrow y=10\end{cases}}\)
Bài 3: đề không rõ.
Bài 1:\(a,A=x^4+\left(y-2\right)^2-8\)
Có \(x^4\ge0;\left(y-2\right)^2\ge0\)
\(\Rightarrow A\ge0+0-8=-8\)
Dấu "=" xảy ra khi \(MinA=-8\Leftrightarrow x=0;y=2\)
\(b,B=\left|x-3\right|+\left|x-7\right|\)
\(\Rightarrow B=\left|x-3\right|+\left|7-x\right|\)
\(\Rightarrow B\ge\left|x-3+7-x\right|\)
\(\Rightarrow B\ge\left|-10\right|=10\)
Dấu "=" xảy ra khi \(MinB=10\Leftrightarrow3\le x\le7\Rightarrow x\in\left(3;4;5;6;7\right)\)
1)
Vì \(24⋮x;36⋮x;160⋮x\)và x lớn nhất nên x = ƯCLN ( 24;36;160)
Ta có :
24 = 23 . 3
36 = 22 . 32
160 = 35 . 5
=> ƯCLN(24;36;160)=1
Vậy x = 1
2)
\(64⋮x;36⋮x;88⋮x\)và x lớn nhất nên x = ƯCLN ( 64;36;38)
Ta có :
64 = 26
36 = 22 . 32
88 = 23 . 11
=> ƯCLN ( 64 : 36 : 88 ) = 22=4
Vậy x = 4
\(A=\frac{2n+3}{n-2}=\frac{2n-4+7}{n-2}=\frac{2.\left(n-2\right)}{n-2}+\frac{7}{n-2}=2+\frac{7}{n-2}\)
Ta có A lớn nhất \(\Leftrightarrow\frac{7}{n-2}\)lớn nhất
\(\Leftrightarrow\hept{\begin{cases}n-2coGTNN\\n-2>0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}n>2;n\in Z\\n-2coGTNN\end{cases}}\)
\(\Leftrightarrow n=3\)
Khi đó A có GTLN là \(\frac{2.3+3}{3-2}=9\)
Vậy MAX A =9 \(\Leftrightarrow x=3\)
(P/S: có vài chỗ anh viết ko ra tiếng việt nhé )
\(\left(3x-1\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(3x+3-4\right)⋮\left(x+1\right)\)
\(\Rightarrow\left(-4\right)⋮\left(x+1\right)\)
\(\Rightarrow x+1\inƯ\left(-4\right)=\left\{-4;-1;1;4\right\}\)
\(\Rightarrow x\in\left\{-5;-2;0;3\right\}\)
Lê Minh Phương tham khảo bài mình nhé
\(a,\frac{9}{-7}< x>\frac{7}{2}\)
\(\Leftrightarrow\frac{-9}{7}< x>\frac{7}{2}\)
\(\Leftrightarrow\frac{-18}{14}< x>\frac{49}{14}\)
\(\Leftrightarrow-18< x>49\)
\(\Leftrightarrow x\in\left\{-17;-16;-15;...;50\right\}\)
Còn bài kia tương tự
\(a,\frac{9}{-7}< x< \frac{7}{2}\)
\(\Rightarrow\frac{9.2}{-7.2}< x< \frac{7.7}{2.7}\)
\(\Rightarrow\frac{-18}{14}< x< \frac{49}{14}\)
\(\text{vì}x\in Z\Rightarrow x=-\frac{14}{14};\frac{0}{14};\frac{14}{14};\frac{28}{14};\frac{42}{14}\)
\(\text{hay }x=\left\{-1;0;1;2;3\right\}\)
*với y=0 => để x+y nhỏ nhất <=> x nhỏ nhất => A^2 nhỏ nhất
mà A^2= 65+ 2^x
=> A^2 lẻ
=> A^2= 81 => 2^x=16 => x=4
khi đó x+y=4
*với x=0, lập luận tương tự => A^2= 65+ 8^y
+, A^2=81 => 8^y=16 => ko có y...
+, A^2=121 => 8^y=56 => ko có
+, A^2=169 => 8^y=104 => ko có...
(đến đây ko xét A^2 nữa vì nếu thỏa mãn thì x+y nhỏ nhất cũng =4)
+, với y khác 0 => A^2 chẵn mặt khác 2^x < 2^3y với x;y khác 0 và x+y<4
=> để x+y nhỏ nhất <=> x nhỏ nhất và y lớn nhất
tức y thuộc {1;2} và x thuộc {0;1}
=> 64<A^2 < 64+64+2=130
=> A^2=100 => 2^x+8^y= 36 => y=1 => 2^x=28 => loại
vậy...
Câu hỏi của Trần Đại Nghĩa - Toán lớp 6 - Học toán với OnlineMath
Tham khảo bài của cô Chi nhé
Đáp án cần chọn là: B