K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

sao lại C32n+1 nhỉ

23 tháng 11 2016

3 ở trên 2n+1 ở dưới đó b

 

NV
5 tháng 11 2019

\(\left(1+x\right)^n=\sum\limits^n_{k=0}C_n^kx^k\)

Hệ số của 2 số hạng liên tiếp là \(C_n^k\)\(C_n^{k+1}\)

\(\Rightarrow7C_n^k=5C_n^{k+1}\Leftrightarrow\frac{7n!}{k!.\left(n-k\right)!}=\frac{5n!}{\left(k+1\right)!\left(n-k-1\right)!}\)

\(\Leftrightarrow\frac{7}{n-k}=\frac{5}{k+1}\Leftrightarrow7k+7=5n-5k\)

\(\Leftrightarrow5n=12k+7\Rightarrow n=\frac{12k+7}{5}\)

\(\Rightarrow n_{min}=11\) khi \(k=4\)

2/ \(\left(x-2\right)^{100}=\sum\limits^{100}_{k=0}C_{100}^kx^k.\left(-2\right)^{100-k}\)

\(a_{97}\) là hệ số của \(x^{97}\Rightarrow k=97\)

Hệ số là \(C_{100}^{97}.\left(-2\right)^3\)

NV
23 tháng 4 2019

Xét khai triển:

\(\left(x+1\right)^n=C_n^0+C_n^1x+C_n^2x^n+C_n^3x^3+...+C_n^nx^n\)

Đạo hàm 2 vế:

\(n\left(x+1\right)^{n-1}=C_n^1+2C_n^2x+3C_n^3x^2+...+nC_n^nx^{n-1}\)

Thay \(x=1\) vào ta được:

\(n.2^{n-1}=C_n^1+2C_n^2+3C_n^3+...+nC_n^2=256n\)

\(\Rightarrow2^{n-1}=256=2^8\Rightarrow n=9\)

Câu 2:

\(\left(x-2\right)^{80}=a_0+a_1x+a_2x^2+a_3x^3+...+a_{80}x^{80}\)

Đạo hàm 2 vế:

\(80\left(x-2\right)^{79}=a_1+2a_2x+3a_3x^2+...+80a_{80}x^{79}\)

Thay \(x=1\) ta được:

\(80\left(1-2\right)^{79}=a_1+2a_2+3a_3+...+80a_{80}\)

\(\Rightarrow S=80.\left(-1\right)^{79}=-80\)

23 tháng 4 2019

cảm ơn anh