Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi khai triển \(\left(a+b\right)^n\)thì nó có chứa các hạng tử \(m\cdot a^{n-k}\cdot b^k\)và m được xác định bằng tam giác Paxcan ( Tam giác Pascal – Wikipedia tiếng Việt )
Theo đề bài ta có n = 3
=> các hệ số lần lượt của nó là 1 - 3 - 3 - 1
Áp dụng khai triển \(\left(2x+3y^2\right)^3=8x^3+36x^2y^2+54xy^4+27y^6\)
Vậy ta có hệ số của x2y2 là 36
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
\(B=\left(x-5+3y\right)^2+50-6xy\)
\(=x^2+25+9y^2-10x-30y+6xy+50-6xy\)
\(=x^2+9y^2-10x-30y+75\)
\(=x^2-10x+25+9y^2-30y+25+25\)
\(=\left(x-5\right)^2+\left(3y-5\right)^2+25>0\forall x;y\)
a, \(\left(2x-3y\right)^3=8x^3-36x^2y+54xy^2-27y^3\)
b, \(\left(2x+\dfrac{9}{2}\right)^3=8x^3-54x^2+121,5x-91,125\)
c, \(\left(x+2y\right)^3+\left(x-2y\right)^3=x^3+6x^2y+12xy^2+8y^3+x^3-6x^2y+12xy^2-8y^3\)
\(=2x^3+24xy^3\)
d, \(\left(2x+1\right)^3-\left(x-1\right)^3-7\left(x+1\right)^3\)
\(=8x^3+12x^2+6x+1-\left(x^3-3x^2+3x-1\right)-7\left(x^3+3x^2+3x+1\right)\)
\(=8x^3+12x^2+6x+1-x^3+3x^2-3x+1-7x^3-21x^2-21x-7\)
\(=-6x^2-18x-5\)
Chúc bạn học tốt!!!
(x2 + 2)2 - (2 + x)(x - 2)(x2 + 4) + 10
= (x2 + 2)2 - (4 - x2)(x2 + 4) + 10
= x4 + 4x2 + 4 - (16 - x4) + 10
= x4 + 4x2 + 4 - 16 + x4 + 10
= 2x4 + 4x2 - 2
\(\left(2x+3y^2\right)^3\)
\(=8x^3+36x^2y^2+54xy^4+27y^6\)
Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36
Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)