K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(2x^3+11x^2+ax+b⋮x^2+3x-1\)

=>\(2x^3+6x^2-2x+5x^2+15x-5+\left(a-13\right)x+b+5⋮x^2+3x-1\)

=>\(\left\{{}\begin{matrix}a-13=0\\b+5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=13\\b=-5\end{matrix}\right.\)

4 tháng 5 2017

Tổng các hệ số của đa thức bằng giá trị của đa thức đó tại x = 1

cứ thế áp dụng vào

22 tháng 6 2015

Q(x)= -0,2+3x-7x3+5x2-2x3-ax3

=-7x3-2x3-ax3+5x2+3x-0,2

=(-7-2-a)a3+5x2+3x-0,2

Q(x) có hệ số cao nhất là 5

=>-7-2-a=5

-9-a=5

-a=5+9

-a=14

a=14

AH
Akai Haruma
Giáo viên
20 tháng 2 2018

Lời giải:

Ta có: \(\left\{\begin{matrix} P(1)=Q(2)\\ P(-1)=Q(5)\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} 2+a+4=4-10+b\\ 2-a+4=25-25+b\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -a+b=12\\ a+b=6\end{matrix}\right.\)

\(\Rightarrow 2b=12+6=18\Leftrightarrow b=9\), suy ra \(a=-3\)

b) Theo bài ra ta có:

\(\left\{\begin{matrix} B(0)=4\\ B(1)=3\\ B(-1)=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} c=4\\ a.1^2+b.1+c=a+b+c=3\\ a.(-1)^2+b(-1)+c=a-b+c=7\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} c=4\\ a+b=-1\\ a-b=3\end{matrix}\right.\)

Cộng 2 PT cuối cho nhau: \(\Rightarrow 2a=-1+3=2\Leftrightarrow a=1\)

\(\Rightarrow b=-2\)

Vậy \((a,b,c)=(1,-2,4)\)

30 tháng 4 2019

a. C(x)+B(x)=A(x)

A(x)=

30 tháng 4 2019

bắm lộn

\(P\left(x\right)=ax^4+x^3\left(2-b\right)+3x^2-x+c+4\)

Vì P(x) là đa thức bậc 3, hệ số cao nhất là 4 và hệ số tự do là 10 nên ta có: 

\(\left\{{}\begin{matrix}a=0\\2-b=4\\c+4=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=0\\b=-2\\c=6\end{matrix}\right.\)

27 tháng 4 2019

a) Ta có : \(C\left(x\right)+B\left(x\right)=A\left(x\right)\)

\(\Leftrightarrow C\left(x\right)=A\left(x\right)-B\left(x\right)\)

                   \(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-x-8\right)\)

                   \(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+x+8\)

                   \(=-9x^2+12x+2\)

b) Ta có :                  \(C\left(x\right)=2x+2\)

\(\Leftrightarrow-9x^2+12x+2=2x+2\)

\(\Leftrightarrow\)        \(-9x^2+10x=0\)

\(\Leftrightarrow\)    \(x\left(-9x+10\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=\frac{10}{9}\end{cases}}\)

c) Giả sử :                 \(C\left(x\right)=2012\)

\(\Leftrightarrow\)\(-9x^2+12x+2=2012\)

\(\Leftrightarrow-9x^2+12x-2010=0\)

\(\Leftrightarrow\)\(9x^2-12x+2010=0\)

\(\Leftrightarrow\left(9x^2-2.3x.2+4\right)+2006=0\)

\(\Leftrightarrow\left(3x-2\right)^2+2006=0\)(vô nghiệm vì \(\left(3x-2\right)^2\ge0\forall x\inℝ\))

Do đó với x nguyên thì C(x) không thể nhận giá trị bằng 2012.