Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
c: 2x=3y
nên x/3=y/2
=>x/9=y/6
5y=3z
nên y/3=z/5
=>y/6=z/10
=>x/9=y/6=z/10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{6}=\dfrac{z}{10}=\dfrac{3x+3y-7z}{3\cdot9+3\cdot6-7\cdot10}=\dfrac{35}{-25}=-\dfrac{7}{5}\)
Do đó: x=-63/5; y=-42/5; z=-14
Bài 2:
Gọi ba số lần lượt là a,b,c
Theo đề, ta có: 4/3a=b=3/4c
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{4}}=\dfrac{b}{1}=\dfrac{c}{\dfrac{4}{3}}\)
\(\Leftrightarrow\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}\)
Đặt \(\dfrac{a}{9}=\dfrac{b}{12}=\dfrac{c}{16}=k\)
=>a=9k; b=12k; c=16k
Theo đề, ta có: \(a^2+b^2+c^2=481\)
\(\Leftrightarrow81k^2+144k^2+256k^2=481\)
=>k2=1
Trường hợp 1: k=1
=>a=9; b=12; c=16
Trường hợp 2: k=-1
=>a=-9; b=-12; c=-16
Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762
Bài 1:
Từ \(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{2x}{4}=\dfrac{5y}{35}\) và 2x-5y=93
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{7}=\dfrac{2x}{4}=\dfrac{5y}{35}=\dfrac{2x-5y}{4-35}=\dfrac{93}{-31}=-3\)
=> x = 2 * (-3) = -6
y = 7 * (-3) = -21
cho x,y,z khác 0 thỏa mãn: 2( x+y)= 3(y+z)=4(z+x) tính
P= \(\dfrac{x}{y}+\dfrac{y}{z}+\dfrac{z}{x}\)
Lời giải:
$2(x+y)=3(y+z)=4(x+z)$
$\Rightarrow \frac{x+y}{6}=\frac{y+z}{4}=\frac{x+z}{3}$ (chia cả 3 vế cho $12$)
Đặt giá trị trên là $t$
$\Rightarrow x+y=6t; y+z=4t; z+x=3t$
$\Rightarrow x+y+z=(6t+4t+3t):2=6,5t$
$x=6,5t-4t=2,5t; y=6,5t-3t=3,5t; z=6,5t-6t=0,5t$. Khi đó:
$P=\frac{2,5t}{3,5t}+\frac{3,5t}{0,5t}+\frac{0,5t}{2,5t}$
$=\frac{2,5}{3,5}+\frac{3,5}{0,5}+\frac{0,5}{2,5}=\frac{277}{35}$
+) Nếu \(x+y+z\ne0\)
Theo t,c dãy tỉ số bằng nhau ta có :
\(\dfrac{y+z-x}{x}=\dfrac{z+x-y}{y}=\dfrac{x+y-z}{z}=\dfrac{\left(y+z-x\right)+\left(z+x-y\right)+\left(x+y-z\right)}{x+y+z}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y+z-x}{x}=1\\\dfrac{x+z-y}{y}=1\\\dfrac{x+y-z}{z}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z-x=x\\x+z-y=y\\x+y-z=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=2x\\x+z=2y\\x+y=2z\end{matrix}\right.\)
\(\Leftrightarrow B=\left(\dfrac{x+y}{y}\right)\left(\dfrac{y+z}{z}\right)\left(\dfrac{x+z}{x}\right)\)
\(\Leftrightarrow B=\dfrac{2z}{y}.\dfrac{2x}{z}.\dfrac{2y}{x}=2\)
+) Nếu \(x+y+z\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=-z\\x+z=-y\\y+z=-x\end{matrix}\right.\)
\(\Leftrightarrow B=\dfrac{-z}{y}.\dfrac{-x}{z}.\dfrac{-y}{x}=-1\)
Vậy ..
Hằng à,t chưa thấy đứa này ngu như mày
\(\dfrac{2x.2y.2z}{xyz}=2\) thì học hành cái qq j
Đặt \(x=2k;y=5k;z=7k\)
\(P=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4k}{5k}=\dfrac{4}{5}\)