Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, do x+y=30 và xy=221 nên u và v là nghiệm của pt :
x2-30x+221=0
\(\Delta^,\)=225-221=4 ;\(\sqrt{\Delta^,}\)=2
=> pt có hai nghiệm phân biệt .
x1=13 ; x2=17
Vậy x=13;y=17 hoặc x=17; y=13
x+y=120
(8+x)(5+y)=874+xy => 40+8y+5x+xy=874+xy => 5x+8y=834
Ta có hệ : x+y=120
5x+8y=834
Vậy (x,y)=(42;78)
có x+y=2021=>y=2021-x
=>x.y=x(2021-x)=2021x-\(x^2\)
=>P=2021x-\(x^2\)
=> -P=\(x^2-2021x\)\(=x^2-2.\dfrac{2021}{2}.x+\left(\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)=\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)
lại có x,y nguyên dương=>x,y\(\ge\)1
có x+y=2021=>x,y\(\le\)2020
=>\(x\le2020\)
=>\(x-\dfrac{2021}{2}\le2020-\dfrac{2021}{2}\)
<=>\(\left(x-\dfrac{2021}{2}\right)^2\le\left(\dfrac{2019}{2}\right)^2\)
=>\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\le\)\(\left(\dfrac{2019}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2=-2020\)
<=>\(-P\le-2020< =>P\ge2020\)
dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2020\\x=1\end{matrix}\right.\)
vậy MIN P=2020 khi x=2020 hoặc x=1
bổ sung đoạn cuối dấu với x=2020 thì y=1
với x=1 thì y =2020
x2 + y2 = \(\sqrt{9-4\sqrt{5}}+\sqrt{14-6\sqrt{5}}\) = \(\sqrt{5}-2+3-\sqrt{5}=1\)
Ta có
P = xy \(\le\frac{x^2+y^2}{2}=\frac{1}{2}\)
x-y=5
nên x=y+5
Ta có: xy=66
=>y(y+5)=66
\(\Leftrightarrow y^2+5y-66=0\)
=>(y+11)(y-6)=0
=>y=-11 hoặc y=6
=>x=-6 hoặc x=11