Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Ta có:
\(x^2+y^2=x^2+2xy+y^2-2xy\)
\(=(x+y)^2-2xy=1^2-2(-6)=13\)
\(x^3+y^3=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2\)
\(=(x+y)^3-3xy(x+y)\)
\(=1^3-3(-6).1=19\)
A= (x+y)2-2xy
B= (x+y)*(x+y-xy)
C= [ (x+y)2 -2xy]2 - 2(xy)2
Từ đây bạn tự thay số vào tự giải nhé!!!
a) \(A=x^2+y^2=x^2+2xy+y^2-2xy=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
b) \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(-1\right).\left(25-\left(-12\right)\right)=-37\)
c) \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(x^2+y^2\right)^2-2.\left(xy\right)^2=25^2-2.\left(-12\right)^2=337\)
Bài 2: Giả sử tồn tại x,y nguyên dương t/m đề, khi đó pt cho tương đương:
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x+3\right)^2+\left(2y+3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x+3=3\\2y+3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\y=0\end{cases}}\)
Vậy cặp nghiệm nguyên t/m pt là (x;y) = (0;0)
Làm lại bài 2 :v (P/S: Bạn bỏ bài kia đi nhé)
\(4x^2+4y^2-12x-12y=0\Leftrightarrow\left(2x-3\right)^2+\left(2y-3\right)^2=18\)
Ta thấy: \(18=9+9=3^2+3^2\). Mà x,y thuộc Z+ nên \(\hept{\begin{cases}2x-3=3\\2y-3=3\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\y=3\end{cases}}\)
Vậy (x;y) = (3;3)
Theo giả thiết, ta có:
\(x^3+y^3=4028\left(x^2-xy+y^2\right)\Leftrightarrow\frac{x^3+y^3}{x^2-xy+y^2}=4028\Leftrightarrow\frac{\left(x+y\right)\left(x^2-xy+y^2\right)}{x^2-xy+y^2}=4028\Leftrightarrow x+y=4028\)
Lại có: \(x-y=2\)
nên \(x+y+x-y=4028+2\Leftrightarrow2x=4030\Leftrightarrow x=2015\)
Dễ dàng suy ra được \(y=2013\)
Vậy, \(x=2015;y=2013\)
a) \(x^4+x^3+x+1\)
\(\left(x^4+x^3\right)+\left(x+1\right)\)
\(x^3\left(x+1\right)\)+(x+1)
(x+1)(\(x^3+1\))
e)\(ax^2+ay-bx^2-by\)
\(\left(ax^2+ay\right)-\left(bx^2+by\right)\)
\(a\left(x^2+y\right)-b\left(x^2+y\right)\)
\(\left(x^2+y\right)\left(a-b\right)\)
Giải:
Theo đề ra, ta có:
\(x^3+y^3=4021\left(x^2-xy+y^2\right)\)
Mà \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow4021\left(x^2-xy+y^2\right)=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow x+y=4021\) (1)
Mà theo giả thiết ta có: \(x-y=1\) (2)
Từ (1) và (2) \(\Rightarrow\left\{{}\begin{matrix}x=\left(4021+1\right):2\\y=\left(4021-1\right):2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2011\\y=2010\end{matrix}\right.\)
Vậy x = 2011 và y = 2010.
Chúc bạn học tốt!
Trần Quốc Lộc, Hung nguyen, Gia Hân Ngô, Phạm Hoàng Giang, Toshiro Kiyoshi, @Aki Tsuki, @Trương Tú Nhi, ...