K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Áp dụng tính chất dãy tỉ số bằng nhau có:

x/2=y/3=x.y/2.3=216/6=36

x/2=36

x=72

y/3=36

y=108

31 tháng 7 2021

y=108 nha

NM
14 tháng 8 2021

ta có :

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2+z^2}{4+9+25}=\frac{152}{38}=4\)

vậy ta có \(x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=-6,z=10\\x=-4,y=6,z=-10\end{cases}}\)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

DD
23 tháng 6 2021

\(\frac{x}{2}=\frac{y}{7}\Leftrightarrow y=\frac{7}{2}x\)

\(xy=x.\frac{7}{2}x=\frac{7}{2}x^2=1400\Leftrightarrow x^2=400\)

\(\Leftrightarrow\orbr{\begin{cases}x=20\Rightarrow y=70\\x=-20\Rightarrow y=-70\end{cases}}\).

23 tháng 6 2021

ta có x.y=1400

=>y=\(\frac{1400}{x}\)(1)

ta có :\(\frac{x}{2}=\frac{y}{7}\)

=>7x=2y(2)

thay (1) vào (2), ta được:

7x=2.\(\frac{1400}{x}\)

=>7x-\(\frac{2800}{x}\)=0

=>\(\frac{7x^2-2800}{x}=0\)(x\(\ne0\))

=>7x2-2800=0

=>7x2=2800

=>x2=400

=>x=\(\pm20\)

với x=20 =>y=\(\frac{1400}{20}=70\)

với x=-20=>y=\(\frac{1400}{-20}=-70\)

vậy ...

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))

14 tháng 2 2018

Ta có số nguyên âm lớn nhất là -1 => y = -1

Thay x = \(\frac{1}{2}\); y = -1 vào biểu thức, ta có:

\(\frac{x^3-3x^2+0,25xy^2-4}{x^2+y}\)\(\frac{\left(\frac{1}{2}\right)^3-3\left(\frac{1}{2}\right)^2+0,25\left(\frac{1}{2}\right)\left(-1\right)^2-4}{\left(\frac{1}{2}\right)^2+\left(-1\right)}\)\(\frac{\frac{1}{8}-3.\frac{1}{4}+\frac{1}{4}-4}{\frac{1}{4}-1}\)

\(\frac{\frac{1}{8}-1-4}{\frac{-3}{4}}\)\(\frac{\frac{-7}{8}+\frac{1}{4}-4}{\frac{-3}{4}}\)\(\frac{\frac{-7+2-32}{8}}{\frac{-3}{4}}\)\(\frac{\frac{-37}{8}}{\frac{-3}{4}}\)\(\frac{-37}{8}\left(\frac{-4}{3}\right)\)\(\frac{37}{6}\)

Vậy khi x = \(\frac{1}{2}\)và y là số nguyên âm lớn nhất thì A có giá trị là \(\frac{37}{6}\)

27 tháng 8 2017

khong biet

27 tháng 8 2017

x=4, y=6,z=8

5 tháng 11 2024

  Bài 1:  \(x\).(\(x-y\)) = \(\dfrac{3}{10}\) và y(\(x-y\)) = - \(\dfrac{3}{50}\)

    \(x\)(\(x\) - y) - y(\(x\) - y) = \(\dfrac{3}{10}\) - ( - \(\dfrac{3}{50}\))

     (\(x-y\)).(\(x-y\)) = \(\dfrac{3}{10}\) + \(\dfrac{3}{50}\)

        (\(x-y\))2 = \(\dfrac{15}{50}\) + \(\dfrac{3}{50}\)

        (\(x\) - y)2 = \(\dfrac{9}{25}\) = (\(\dfrac{3}{5}\))2

        \(\left[{}\begin{matrix}x-y=-\dfrac{3}{5}\\x-y=\dfrac{3}{5}\end{matrix}\right.\) 

TH1 \(x-y=-\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\left(-\dfrac{3}{5}\right)=\dfrac{3}{10}\\y.\left(-\dfrac{3}{5}\right)=-\dfrac{3}{50}\end{matrix}\right.\) 

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\left(-\dfrac{3}{5}\right)=\dfrac{-1}{2}\\y=-\dfrac{3}{50}:\left(-\dfrac{3}{5}\right)=\dfrac{1}{10}\end{matrix}\right.\) 

TH2: \(x-y=\dfrac{3}{5}\) ⇒ \(\left\{{}\begin{matrix}x.\dfrac{3}{5}=\dfrac{3}{10}\\y.\dfrac{3}{5}=-\dfrac{3}{50}\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{3}{10}:\dfrac{3}{5}=\dfrac{1}{2}\\y=-\dfrac{3}{50}:\dfrac{3}{5}=-\dfrac{1}{10}\end{matrix}\right.\)  

    Vậy (\(x;y\)  ) = (- \(\dfrac{1}{2}\)\(\dfrac{1}{10}\)); (\(\dfrac{1}{2}\); - \(\dfrac{1}{10}\))

       

                   

         

 

       

        

 

           

 

Ta có:\(\frac{x}{xy+x+1}=\frac{y}{yz+y+1}=\frac{z}{xz+x+1}\)=\(\frac{xz}{xyz+xz+z}=\frac{yxz}{xyz^2+yxz+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xz}{1+xz+z}=\frac{xyz}{z+1+xz}=\frac{z}{xz+z+1}\)

=\(\frac{xyz+xz+1}{xyz+xz+1}\)=1

Đề bn ghi sai nha~~