Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt a=4m+1, b=4n+2(m,n\(\in\)N)
=>ab=(4m+1)(4n+2)
= 16mn+8m+4n+2
Ta thấy 16mn+8m+4n chia hết cho 4
=> ab:14 dư 2
Bài 2 :
a+b=5 <=> ( a+b)2=52
<=> a2+ab+b2=25
Hay : a2+1+b2=25
<=> a2+b2=24
Bài 4 : Gọi 2 số tự nhiên lẻ liên tiếp lần lượt là : a, a+2 ( a lẻ , a thuộc N 0
Theo bài ra , ta có : ( a+2)2-a2= 56
<=> a2+4a+4-a2=56
<=> 4a=56-4
<=> 4a=52
<=> a=13
Vậy 2 số tự nhiên lẻ liên tiếp là : 13; 15
Do a chia 5 dư 1 => a = 5.m + 1; b chia 5 dư 2 => b = 5.n + 2 (m;n thuộc N*)
Ta có: a.b = (5.m + 1).(5.n + 2)
= (5.m + 1).5.n + (5.m + 1).2
= 25.m.n + 5.n + 10.m + 2 chia 5 dư 2
=> a.b chia 5 dư 2
Đặt \(a=5k+2\)
\(b=5h+3\)
\(\Rightarrow ab=\left(5k+2\right)\left(5h+3\right)\)
\(=25kh+15k+10h+6\)
\(=25kh+15k+10h+5+1\)
\(=5\left(5kh+3k+2h+1\right)+1\) chia 5 dư 1.
Vậy ab chai 5 dư 1.
nếu a và b đều là 2 số tự nhiên có 1 chữ số thì
a là 7/6 dư 1
b là 8 chia 6 dư 2
a chia 6 dư 1=> a=6n+1
b chia 6 dư 2=>b=6n+2
Do đó ab=(6n+1)(6n+2)=36n2+18n+2
=> ab chia 6 dư 2
\(b\ne0\)
\(a-b=\frac{a}{b}\Rightarrow ab-b^2=a\Rightarrow a\left(b-1\right)=b^2=b^2-1+1=\left(b-1\right)\left(b+1\right)+1\)
\(\Rightarrow\left(b-1\right)\left(a-b-1\right)=1\)
=> (b-1)=(a-b-1)=1 => a=4; b=2 Hoặc
Do a chia cho 3 dư 1 => a = 3k +1 ( k \(\in\) N)
Do b chia cho 3 dư 2 => b = 3q + 2 ( q \(\in\) N )
=> ab = (3k +1)(3q +2) = 9kq + 6k + 3q + 2
Vì 9 \(⋮\) 3 => 9kq \(⋮\) 3
Vì 6 \(⋮\) 3 => 6k \(⋮\) 3
Vì 3 \(⋮\) 3 => 3q \(⋮\) 3
=> 9kq + 6k + 3q \(⋮\) 3
=> 9kq + 6k + 3q + 2 chia cho 3 dư 2
Hay ab chia cho 3 dư 2