Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2^{2000}\left(2+4+8+32\right)=46\cdot2^{2000}=46\cdot4^{1000}\)
\(4^{2n}\)có 2 chữ số cuối là 16\(\Rightarrow4^{1000}\)có 2 chữ số cuối là 16
\(46\cdot16=736\)có 2 chữ số cuối là \(36\Rightarrow46\cdot4^{1000}\)có 2 chữ số cuối là 36
KL:2 chữ số cuối của A là 36
(x+2004-2004+4)/2000+(x-2004+2004+3)/2001=(x-2004+2004+2)/2002+(x-2004+2004+1)/2003
hay (x+2004)/2000-1+(x+2004)/2001-1=(x+2004)/2002-1+(x+2004)/2003-1
Hay (x+2004)(1/2000+1/2001)=(x+2004)(1/2002+1/2003)
Hay (x+2004)(1/2000+1/2001-1/2002-1/2003)=0
hay x+2004=0
Hay x=-2004
Ta có:
\(\sqrt{2002}-\sqrt{2001}=\dfrac{1}{\sqrt{2002}+\sqrt{2001}}\)
\(\sqrt{2001}-\sqrt{2000}=\dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)
Do \(\sqrt{2002}+\sqrt{2001}>\sqrt{2001}+\sqrt{2000}\)
\(\Rightarrow\dfrac{1}{\sqrt{2002}+\sqrt{2001}}< \dfrac{1}{\sqrt{2001}+\sqrt{2000}}\)
hay \(\sqrt{2002}-\sqrt{2001}\) < \(\sqrt{2001}-\sqrt{2000}\)
\(\Rightarrow\sqrt{2002}-2\sqrt{2001}+\sqrt{2000}< 0\) (đpcm)
c/m \(\sqrt{a+n}+\sqrt{a-n}< 2\sqrt{a}\)
\(\left(\sqrt{a+n}+\sqrt{a-n}\right)^2< \left(2\sqrt{a}\right)^2\)
\(\Leftrightarrow a+n+a-n+2\sqrt{a^2-n^2}< 4a\)
\(2a+2\sqrt{a^2-n^2}< 2a+2\sqrt{a^2}\)
\(2a+2\sqrt{a^2-n^2}< 4a\)
=>\(\sqrt{2001-1}+\sqrt{2001+1}< 2\sqrt{2001}\)
nên\(\sqrt{2000}-2\sqrt{2001}+\sqrt{2002}< 0\left(đpcm\right)\)
220 = (210)2 = 10242 = (...76)
Chú ý: Lũy thừa những số có tận cùng là 76 thì tận cùng là 76
+) Ta có: 22000 = (220)100 = (...76)100 = (...76)
+) 22001 = 2.22000 = 2.(...76) = (...52)
+) 22002 = 22.22000 = 4.(...76) = (....04)
=> 22000 + 22001 + 22002 có hai chữ số tận cùng là hai chữ số tận cùng của (76 + 52 + 04) = 132
Vậy 22000 + 22001 + 22002 có tận cùng là 32
22000+22001+22002=22000(1+2+22)=22000.5=21999.10
21999=24.24...24.23
=16.16...16.8
=...8
=>21999.10=...8.10=...80
Vậy 2 chữ số tận cùng của 22000+22001+22002 là 80