K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2018

Đáp án là 2

2 tháng 8 2016

x-y = 3 =>x=3+y

=>\(B=\left|3+y-6\right|+\left|y+1\right|=\left|y-3\right|+\left|y+1\right|=\left|3-y\right|+\left|y+1\right|\)

Áp dụng BĐT chứa dấu giá trị tuyệt đối:

\(B=\left|3-y\right|+\left|y+1\right|\ge\left|3-y+y+1\right|=4\)

Dấu "=" xảy ra khi: \(\left(3-y\right)\left(y+1\right)\ge0\)

=>3-y\(\ge\)0 và y+1\(\ge\)0 hoặc 3-y\(\le\)0 và y+1\(\le\)0

=>\(-1\le y\le3\)

Vậy GTNN của B là 4 tại \(-1\le y\le3\) và x-y=3

2 tháng 8 2016

B1: \(A=19^{5^{1^{8^{9^0}}}}+2^{9^{1^{9^{6^9}}}}=19^{5^1}+2^{9^1}=19^5+2^9=\overline{....9}+512=\overline{....1}\)

Vậy chữ số tận cùng của A là 1

19 tháng 11 2016

ko thấy gì cả

19 tháng 11 2016

<=> \(A=19^{5^1}+2^{9^1}\)

<=>\(A=19^5+2^9\)

Ta thấy: 19 ≡ 9(mod 10)

<=>19 ≡ -1(mod 10)

<=>19≡ (-1)5(mod 10)

<=>19≡ -1(mod 10)

Lại có: 29=512 ≡ 2(mod 10)

<=>29 ≡ 2(mod 10)

            =>195+2≡ -1+2(mod 10)

            <=>A≡1(mod 10)

Vậy chữ số tận cùng của A là 1

9 tháng 10 2019

giups mk đi nhanh lên

9 tháng 10 2019

Ta có:\(9^{99}=9^{2\cdot49+1}=\left(9^2\right)^{49}\cdot9=81^{49}\cdot9=...1\cdot9=...9\)

Vì số nào có đuôi là 1 thì mũ n cũng có số tận cùng là 1.Ko tin tự kiểm tra

10 tháng 10 2024

Đây là dạng toán nâng cao chuyên đề chữ số tận cúng của lũy thừa. Cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay Olm sẽ hướng dẫn các em làm dạng này như sau:

   \(A=19^{5^{1^{8^{9^0}}}}\) + \(2^{9^{1^{9^{6^9}}}}\)

  +  Ta có: 5 \(\equiv\)  1 (mod 2) ⇒  \(5^{1^{8^{9^0}}}\) \(\equiv\) \(1^{1^{8^{9^0}}}\) (mod 2) 

⇒ \(5^{1^{8^{9^0}}}\)  \(\equiv\) 1 (mod2)

   Vậy đặt \(5^{1^{8^{9^0}}}\) = 2k + 1 khi đó

\(19^{5^{1^{8^{9^0}}}}\) =  \(19^{2k+1}\)  = (192)k.19 = (\(\overline{..1}\))k.19 = \(\overline{..1}^{ }.19\)\(\overline{..9}\) (1)

+ Mặt khác:  9 \(\equiv\) 1 (mod 4) ⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) \(^{1^{1^{9^{6^9}}}}\) (mod 4) 

⇒ \(^{9^{1^{9^{6^9}}}}\) \(\equiv\) 1 (mod 4)

Vậy đặt \(^{9^{1^{9^{6^9}}}}\) = 4k + 1 khi đó 

\(2^{9^{1^{9^{6^9}}}}\) = 24k+1 = (24)k.2 = (\(\overline{..6}\))k.2 = \(\overline{..6}\).2 = \(\overline{..2}\)  (2)

Kết hợp (1) và (2) ta có: 

A = \(\overline{..9}\) + \(\overline{..2}\) = \(\overline{..1}\)