K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2015

có phải thế này không: \(2^{6^{2001}}:100\)

29 tháng 6 2017

a)3

b)9

17 tháng 1 2016

Ta thấy  có chữ số tận cùng là 2

thì chữ 21 số tận cùng bằng 3

35 thì chũ số tận cùng bằng 4

 4thì chũ số tận cùng bằng 2(theo tự luận trên và tự suy ra)

5022001 mỗi số trên có số tận cùng là *** cuối của cơ số.

Vậy số tận cùng của dãy số 2+3+4+...+2

Sẽ=2+3+4+...+2(có điều cần chứng minh đây)

Ta tìm trong dãy sẽ có 2+3+4+...+2số tận cùng bao giờ cũng bằng 0;theo tính chất trên thì tận

cùng của số là 1; có chữ số tận cùng là 1 theo *** của cơ số; có chữ số tận cùng là 0 theo *** cơ số.
Vậy Ta có tổng chữ số tận cùng của dãy số bây giờ là:

2+3+4+...+0+1...+0+1+2

Nhìn vào đay ta thấy một điều là mỗi dãy trên đã có quy luât:

1+...+0;1+...+0(Có 10 số mỗi vế)(tổng mỗi vế là 45)Ta chuyển tổng chữ số tận cùng cua dãy như

sau để cho dễ hiểu:1+2+...+0+2(vậy thừa ra 2)

Vậy ta tính số số hạng của dãy số trên trước (tạm bỏ 2)(tức bỏ tạm 502^2001) để ghép thành các

vế cho dễ.

(501-2):1+1=500(số hạng)

Mà mỗi vế ở trên có 10 chữ số vậy có số vế là:

500:10=50(vế)(mà mỗi vế có tổng bằng 45)

Vậy tổng chũ số tận cùng của dãy số trân làthêm chữ số tận cùng 2 nữa vì lúc nãy thử bỏ):

45.50+2=2252

Vậy chữ số tận cùng của 2252 là 2 tức là chữ số tận cùng của dãy trên là:2

tick đúng mình nhaaaaaaaaaaaa

3 tháng 7 2017

Ta có : A = 1999 x 2001 = 1999 x (1 + 2000) = 1999 x 2000 + 1999

           B = 2000 x 2000 = 2000 x (1999 + 1) = 2000 x 1999 + 2000

Vậy A < B 

3 tháng 7 2017

Sorry mk chưa đoc kĩ đề mk làm lại nhá 

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2000 - 1)(2000 + 1) = 20002 - 1

Mà B = 20002 

Nên A < B  

Áp dụng hàng đẳng thức (a - b)(a + b) = a2 - b2

Ta có : A = (2012 - 1)(2012 + 1) = 20122 - 1

Mà B = 20122 

Nên A < B  

19 tháng 10 2015

tính theo công thức lũy thừa

25 tháng 12 2024

M = 1999 * 2000² + 1999 * 2001 - 2001 * 2000² + 2001 * 1999

Nhóm các số hạng có chứa 2000² lại với nhau:

M = (1999 * 2000² - 2001 * 2000²) + (1999 * 2001 + 2001 * 1999)

Đặt nhân tử chung 2000² ra ngoài:

M = 2000² * (1999 - 2001) + 2 * (1999 * 2001)

M = 2000² * (-2) + 2 * (1999 * 2001)

Ta thấy 1999 = 2000 - 1 và 2001 = 2000 + 1. Áp dụng hằng đẳng thức (a - b)(a + b) = a² - b²:

M = -2 * 2000² + 2 * [(2000 - 1)(2000 + 1)]

M = -2 * 2000² + 2 * (2000² - 1²)

M = -2 * 2000² + 2 * 2000² - 2 * 1

M = -2

18 tháng 6 2019

a,Ý 1:\(14^{14^{14}}=7^{14^{14}}.2^{14^{14}}\)

Dễ chứng minh \(14^{14}⋮4\) và \(14^{14}\) chia 20 dư 16 nên đặt \(14^{14}=4k=20l+16\)

Ta có:\(14^{14^{14}}=7^{4k}.2^{20l+16}=\left(7^4\right)^k.\left(2^{20}\right)^l.2^{16}\)\(=2401^k.1048576^l.65536\)

\(\equiv\left(01\right)^k.\left(76\right)^l.36=01.76.36=2736\equiv36\)(mod 100)

Ý 2:Để ý:\(5^7\equiv5\)(mod 180).Từ đó chứng minh được :\(5^{121}=5^{98}.5^{23}\equiv25.5^5=1625\equiv5\)(mod 180)
Đặt:\(5^{121}=180m+5\).Khi đó:\(17^{5^{121}}=17^{180m+5}=\left(17^{180}\right)^m.17^5\equiv\left(01\right)^m.57=01.57=57\)(mod 100)
Có được :\(17^{180}\equiv01\)(mod 100) là do:\(17^3\equiv13\)(mod 100)  mà \(13^6\equiv9\) nên \(17^{18}\equiv13^6\equiv9\)(mod 100)
Lại có:\(9^{10}\equiv01\)(mod 100) \(\Rightarrow17^{180}\equiv9^{10}\equiv01\)(mod 100)

18 tháng 6 2019

b,Ta có:\(2^{20}=16^5\equiv76\)(mod 100) nên \(2^{2000}=\left(2^{20}\right)^{100}\equiv76^{100}\equiv76\)(mod 100)
\(\Rightarrow2^{2006}=2^{2000}.2^6\equiv76.64=4864\equiv64\)(mod 100)
Đặt \(2^{2006}=100t+64\) ta được \(3^{2^{2006}}=3^{100t+64}=\left(3^{100}\right)^t.3^{64}\equiv\left(001\right)^t.3^{64}=3^{64}\)(mod 1000)
Lại có:\(3^{10}\equiv49\)(mod 1000)\(\Rightarrow3^{60}=\left(3^{10}\right)^6\equiv49^6\equiv201\)(mod 1000)
\(\Rightarrow3^{64}=3^{60}.81\equiv81.201=16281\equiv281\)( mod 1000)