K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2019

\(A=-2\)

\(\Leftrightarrow5x^2+y^2+4xy-6x-2y=-2\)

\(\Leftrightarrow4x^2+x^2+y^2+4xy-4x-2x-2y+1+1=0\)

\(\Leftrightarrow\left(4x^2+4xy+y^2\right)-2\left(2x+y\right)+1+\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(2x+y\right)^2-2\left(2x+y\right)+1+\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(2x+y-1\right)^2+\left(x-1\right)^2=0\)(1) 

Mà \(\left(2x+y-1\right)^2+\left(x-1\right)^2\ge0\)nên (1) xảy ra

\(\Leftrightarrow\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-1\\x=1\end{cases}}\)

\(\Rightarrow B=1^{2015}.\left(-1\right)^{2016}-1^{2016}.\left(-1\right)^{2017}+2014\)

\(=1+1+2014=2016\)

8 tháng 11 2019

Giúp mình với đang cần gấp!!

8 tháng 11 2019

Ta có: A = -2

=> 5x2 + y2 + 4xy - 6x - 2y = -2

=> 5x2 + y2 + 4xy - 6x - 2y + 2 = 0

=> (4x2 + 4xy + y2) - 2(2x + y) + 1 + (x2 - 2x + 1) = 0

=> (2x + y)2 - 2(2x + y) + 1 + (x - 1)2 = 0

=> (2x + y - 1)2 + (x - 1)2 = 0

       <=> \(\hept{\begin{cases}2x+y-1=0\\x-1=0\end{cases}}\)

        <=> \(\hept{\begin{cases}y=1-2x\\x=1\end{cases}}\)

        <=> \(\hept{\begin{cases}y=1-2.1=-1\\x=1\end{cases}}\)

Với x = 1; y = -1 => B = 12015.(-1)2016 - 12016.(-1)2017 + 2014

                                    = 1 + 1 + 2014 = 2016

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

18 tháng 9 2015

x=2015

=> x+1=2016

=> A=x2016-(x+1).x2015+(x+1).x2014-(x+1).x2013+...+(x+1)x2-(x+1)x+2016

=x2016-x2016-x2015+x2015+x2014-x2014-x2013+...+x3+x2-x2-x+2016

=-x+2016

=-2015+2016

=1

Vậy A=1.