Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P=2x^2+5y^2+4xy+8x-4y+15\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)
Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)
Vậy...
b, \(C=2x^2+4xy+4y^2-3x-1\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
sau đó giải tương tự câu a nhé
1A = x^2 + 3x + 3
A= x^2 + 2.x.1,5 + 2.25 + 0,75
A = (x+1,5)^2 +0,75
=> Min A = 0,75 khi x= 1,5
2 Đặt A=x2+5y2+2x−4xy−10y+14
A=(x2−4xy+4y2)+(2x−4y)+1+y2−6y+9+4
A=(x−2y)2+2(x−2y)+1+(y−3)2+4
A=(x−2y+1)2+(y−3)2+4≥4>0
⇒A>0(đpcm)
A = 2x2 + y2 - 2xy - 2y + 2000 = (x2 - 2xy + y2) + 2(x - y) + 1 + (x2 + 2x + 1) + 1998
= (x - y)2 + 2(x - y) + 1 + (x + 1)2 + 1998 = (x - y + 1)2 + (x + 1)2 1998 \(\ge\)1998 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+1=0\\x+1=0\end{cases}}\) <=> \(\hept{\begin{cases}y=x+1\\z=-1\end{cases}}\) <=> \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy MinA = 1998 khi x = -1 và y = .0
b) B = x2 + 5y2 - 2xy + 6x - 18y + 50 = (x2 - 2xy + y2) + 6(x - y) + 9 + (4y2 - 12y + 9) + 32
= (x - y)2 + 6(x - y) + 9 + (2y - 3)2 + 32 = (x - y + 3)2 + (2y - 3)2 + 32 \(\ge\)32 với mọi x,y
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\)<=> \(\hept{\begin{cases}x=y-3\\y=\frac{3}{2}\end{cases}}\) <=> \(\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
Vậy MinB = 32 khi x = -3/2 và y = 3/2
c) C = 3x2 + x + 4 = 3(x2 + 1/3x + 1/36) + 47/12 = 3(x + 1/6)2 + 47/12 > = 47/12 với mọi x
Dấu "=" xảy ra <=> x + 1/6 = 0 <=> x = -1/6
Vậy MinC = 47/12 khi x = -1/6
A = 2y2 + x2 - 2xy - 2y + 2000 ( vầy mới tính được bạn nhé ;-; )
= ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + 1999
= ( x - y )2 + ( y - 1 )2 + 1999
\(\hept{\begin{cases}\left(x-y\right)^2\ge0\forall x,y\\\left(y-1\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y\right)^2+\left(y-1\right)^2+1999\ge1999\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y=0\\y-1=0\end{cases}}\Leftrightarrow x=y=1\)
=> MinA = 1999 <=> x = y = 1
B = x2 + 5y2 - 2xy + 6x - 18y + 50
= ( x2 - 2xy + y2 + 2x - 6y + 9 ) + ( 4y2 - 12y + 9 ) + 32
= [ ( x2 - 2xy + y2 ) + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= [ ( x - y )2 + 2( x - y ).3 + 32 ] + ( 2y - 3 )2 + 32
= ( x - y + 3 ) + ( 2y - 3 )2 + 32
\(\hept{\begin{cases}\left(x-y+3\right)^2\ge0\forall x,y\\\left(2y-3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-y+3\right)^2+\left(2y-3\right)^2+32\ge32\forall x,y\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-y+3=0\\2y-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{3}{2}\\y=\frac{3}{2}\end{cases}}\)
=> MinB = 32 <=> x = -3/2 ; y = 3/2
C = 3x2 + x + 4
= 3( x2 + 1/3x + 1/36 ) + 47/12
= 3( x + 1/6 )2 + 47/12 ≥ 47/12 ∀ x
Đẳng thức xảy ra <=> x + 1/6 = 0 => x = -1/6
=> MinC = 47/12 <=> x = -1/6
\(M=x^2-8x+5\)
\(\Leftrightarrow M=x^2-8x+16-11\)
\(\Leftrightarrow M=\left(x-4\right)^2-11\ge-11\)
Min M = -11
\(\Leftrightarrow\left(x-4\right)^2=0\Leftrightarrow x=4\)
\(N=-3x-6x-9\)
\(\Leftrightarrow N=-9x-9\le-9\)
Max N = -9
\(\Leftrightarrow x=0\)
\(M=\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)+3y^2-2\)
\(M=\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2+3y^2-2\ge-2\)
\(A=\left(2x+5y\right)^2+\left|3x-9\right|+200\)
\(\left(2x+5y\right)^2\ge0;\left|3x-9\right|\ge0\)
\(\Rightarrow\left(2x+5y\right)^2+\left|3x-9\right|\ge0\)
\(\Rightarrow\left(2x+5y\right)^2+\left|3x-9\right|+200\ge200\)
\(\Rightarrow A\ge200\)
dấu "=" xảy ra khi :
\(\hept{\begin{cases}\left(2x+5y\right)^2=0\\\left|3x-9\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2x+5y=0\\3x-9=0\end{cases}\Rightarrow}\hept{\begin{cases}2x=-5y\\x=3\end{cases}}}\)
=> 2.3 = -5.y
=> -5y = 6
=> y = -6/5
vậy Min A = 200 khi x = 3 và y = -6/5
Ta có: (2x + 5y)2 \(\ge\)0 \(\forall\)x; y
|3x - 9| \(\ge\)0 \(\forall\)x
=> (2x + 5y) + |3x - 9| + 200 \(\ge\)200 \(\forall\)x;y
Hay A \(\ge\)200 \(\forall\)x; y
Dấu "=" xảy ra khi : \(\hept{\begin{cases}2x+5y=0\\3x-9=0\end{cases}}\) <=> \(\hept{\begin{cases}5y=-2x\\3x=9\end{cases}}\) <=> \(\hept{\begin{cases}y=-\frac{2}{5}x\\x=3\end{cases}}\) <=> \(\hept{\begin{cases}y=-\frac{6}{5}\\x=3\end{cases}}\)
Vậy Amin = 200 tại x = 3 và y = -6/5