K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

\(A=2x^2-6x-\sqrt{7}\)

\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)

\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)

Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)

AH
Akai Haruma
Giáo viên
18 tháng 1 2020

Biểu thức không có giá trị nhỏ nhất. Bạn xem lại đề.

26 tháng 7 2018

a) \(5x^2-12xy+9y^2-4x+4=\left(4x^2-12xy+9y^2\right)+x^2-4x+4=\left(2x-3y\right)^2+\left(x-2\right)^2\ge0\)
b) \(-x^2-2y^2+12x-4y+7=-\left(x^2-12x+36\right)-2\left(y^2+2y+1\right)+45=-\left(x-6\right)^2-2\left(y+1\right)^2+45\le45\)

c)\(4y^2+10x^2+12xy+6x+7=\left(4y^2+12xy+9x^2\right)+x^2+6x+9-2=\left(2y+3x\right)^2+\left(x+3\right)^2-2\ge-2\)

d) \(3-10x^2-4xy-4y^2=3-\left(4y^2+4xy+x^2\right)-9x^2=-\left(2y+x\right)^2-9x^2+3\le3\)

e)\(x^2-5x+y^2-xy-4y+16=\left(\frac{1}{2}x^2-xy+\frac{1}{2}y^2\right)+\frac{1}{2}\left(x^2-10x+25\right)+\frac{1}{2}\left(y^2-8y+16\right)-\frac{9}{2}=\frac{1}{2}\left(x-y\right)^2+\frac{1}{2}\left(x-5\right)^2+\frac{1}{2}\left(y-4\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)Phần e) mới nghĩ đk v, tui biết đáp án sao do k xảy ra dấu bằng

1 tháng 12 2019

Ta có:

C = 13x2 + 4y2 - 12xy - 2x - 4y + 10

C = (9x2 - 12xy + 4y2) + 2(3x - 2y) + 1 + (4x2 - 8x + 4) + 5

C = (3x - 2y)2 + 2(3x - 2y) + 1 + 4(x2 - 2x + 1) + 5

C = (3x - 2y + 1)2 + 4(x - 1)2 + 5 \(\ge\)\(\forall\)x; y

Dấu "=" xảy ra <=> \(\hept{\begin{cases}3x-2y+1=0\\x-1=0\end{cases}}\) <=> \(\hept{\begin{cases}2y=3x+1\\x=1\end{cases}}\) <=> \(\hept{\begin{cases}2y=3.1+1=4\\x=1\end{cases}}\)<=> \(\hept{\begin{cases}y=2\\x=1\end{cases}}\)

Vậy MinC = 5 <=> x = 1 và y = 2

1 tháng 12 2019

SOS dao lam có thể sử dụng trong bài này!

Chú ý:

+)\(C=2\left(3x-2y+1\right)^2+5-\left(x-2y+3\right)\left(5x-2y-1\right)\)

+) \(C=8\left(x-1\right)^2+5+\left(x-2y+3\right)\left(5x-2y-1\right)\)

Vậy ta tìm được: \(C=\frac{C+C}{2}=\frac{2\left(3x-2y+1\right)^2+8\left(x-1\right)^2+10}{2}\)

\(=\left(3x-2y+1\right)^2+4\left(x-1\right)^2+5\ge5\)

13 tháng 7 2018

\(A=x^2-2x+2+4y^2+4y\)

\(A=\left(x^2-2x\cdot1+1\right)+\left(4y^2+4y\right)+1\)

\(A=\left(x-1\right)^2+4\left(y^2+y\right)+1\)

Do \(\left(x-1\right)^2>\) hoặc bằng 0 và \(4\left(y^2+y\right)\)> hoặc bằng 0

nên để A đạt GTNN thì \(\left\{{}\begin{matrix}x-1=0\\y^2+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

13 tháng 7 2018

Vậy A\(_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

21 tháng 7 2021

Trả lời:

Ta có: ( x - 2y )3 = x3 - 3.x2.2y + 3.x.( 2y )2 - ( 2y )3 = x3 - 6x2y + 12xy2 - 8y3 ( HĐT thứ 5 - lập phương của 1 hiệu )

=> Chọn b

21 tháng 7 2021

chọn đáp án đúng và giải thick ra nhé

\(=\dfrac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\cdot\dfrac{\left(x-2y\right)^2}{-\left(x-2y\right)\left(x+2y\right)}:\dfrac{5x^2y-10xy^2}{x^3+6x^2y+12xy^3+8y^3}\)

\(=\dfrac{-2x\left(x-2y\right)^2}{\left(x+2y\right)^3}\cdot\dfrac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}\)

\(=\dfrac{-2x\cdot\left(x-2y\right)}{5xy}=\dfrac{-2\left(x-2y\right)}{5y}\)