Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*\(A=x^2+2y^2-2xy-4x-6y-3\)
\(A=x^2-2x\left(y+2\right)+\left(y^2+4y+4\right)+\left(y^2-10y+25\right)-32\)
\(A=x^2-2x\left(y+2\right)+\left(y+2\right)^2+\left(y-5\right)^2-32\)
\(A=\left(x-y-2\right)^2+\left(y-5\right)^2-32\ge-32\)
\(\Rightarrow Min_A=-32\Leftrightarrow x=7;y=5\)
* \(B=4x^2+2y^2-4xy+4x+6y+1\)
\(B=\left(2x\right)^2-\left(4xy+4x\right)+\left(y^2-2y+1\right)+\left(y^2+8y+16\right)-16\)\(B=\left(2x\right)^2-2.2x\left(y-1\right)+\left(y-1\right)^2+\left(y+4\right)^2-16\)\(B=\left(2x-y+1\right)^2+\left(y+4\right)^2-16\ge-16\)
\(\Rightarrow Min_B=-16\Leftrightarrow x=-\dfrac{5}{2};y=-4\)
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
\(A=x^2+y^2-2x+6y+20\)
\(=\left(x^2-2x+1\right)+\left(y^2+6y+9\right)+10\)
\(=\left(x-1\right)^2+\left(y+3\right)^2+10\ge10\)
Vậy GTNN của A là 10 khi \(x=1\) và \(y=-3\)
\(B=x^2+2y^2+2xy-4x-8y+2014\)
\(=\left[\left(x^2+2xy+y^2\right)-4\left(x+y\right)+4\right]+\left(y^2-4y+4\right)+2006\)
\(=\left(x+y-2\right)^2+\left(y-2\right)^2+2006\ge2006\)
Vậy GTNN của B là 2006 khi \(x=0\) và \(y=2\)
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
\(A=x^2-4xy+5y^2-6y+20=x^2-2.2xy+4y^2+y^2-2.3y+9-9+20=\left(x-2y\right)^2+\left(x-3\right)^2+11\ge11\)
\(\Rightarrow A_{min}=\frac{7}{4}\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3=0\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=3\end{cases}\Rightarrow}\hept{\begin{cases}x=2.3=6\\y=3\end{cases}}}\)
2 bài sau tương tự nếu ko biết nhna81 tin mình mình làm cho
T I C K cho mình nha mình cảm ơn
A= ( x^2 +2xy +y^2) - (4x +4y )+y^2-2y+6
= [(x+y)^2- 2(x+y)2 + 4] +( y^2-2y +1)+1
= (x+y-2)^2 + (y-1)^2 +1
=>A > hoặc = 1
Dấu "=" xảy ra khi\(\hept{\begin{cases}x+y-2=0\\y-1=0\end{cases}}\)
=> \(\hept{\begin{cases}x=1\\y=1\end{cases}}\)
Vậy Min A = 1 <=> x=y=1