K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 12 2019

                                                                   Bài giải

a, \(A=\left|x-\frac{15}{19}\right|\)

Vì \(A=\left|x-\frac{15}{19}\right|\ge0\) Dấu " = " xảy ra khi \(x-\frac{15}{19}=0\text{ }\Rightarrow\text{ }x=\frac{15}{19}\)

\(\Rightarrow\text{ }Min\text{ }A=0\text{ khi }x=\frac{15}{19}\)

b, \(B=11-\left|\frac{2}{3}x+\frac{1}{2}\right|\)

B đạt GTNN \(\left|\frac{2}{3}x+\frac{1}{2}\right|\) đạt GTLN

\(\Rightarrow\text{ không tính được}\)

1 tháng 8 2017

a) vì \(\left|x+\frac{15}{19}\right|\ge0\text{ }\forall\text{ }x\)

\(\Rightarrow\)Mmin  \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = \(\frac{-15}{19}\)

b) vì \(\left|x-\frac{4}{7}\right|\ge0\text{ }\forall\text{ }x\)

\(\Rightarrow\)\(\left|x-\frac{4}{7}\right|-\frac{1}{2}\ge\frac{-1}{2}\)

\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = \(\frac{-1}{2}\)\(\Rightarrow\)\(x=\frac{4}{7}\)

2 tháng 8 2017

không cần SKT_NTT trả lời

3 tháng 8 2017

a) vì | x + 15/19 | \(\ge\)\(\forall\)x

\(\Rightarrow\)Mmin \(\Leftrightarrow\)M = 0 \(\Rightarrow\)x = -15/19

b) vì | x - 4/7 | \(\ge\)\(\forall\)x

\(\Rightarrow\)|x  - 4/7 | - 1/2 \(\ge\)-1/2

\(\Rightarrow\)Nmin \(\Leftrightarrow\)N = -1/2 \(\Rightarrow\)x = 4/7

14 tháng 2 2016

1/2 ở bài 1 là phân số à

Tìm GTNN

A= 4x^2 - 12x + 16

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Amin = \(\frac{3}{2}\)

B= 9x^2 + 30x + 59

 Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Bmin = \(-\frac{5}{3}\)

C= x^2 + 3x + 19

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Cmin = \(-\frac{3}{2}\) 

D= 3x^2 - 3x +7

Giải hệ phuong trình trên máy tính lặp 3 dấu =

KQ : Dmin = \(\frac{1}{2}\)

27 tháng 7 2019

a) \(A=4x^2-12x+16\)

\(=\left(2x\right)^2-2.2x.3+9+7\)

\(=\left(2x-3\right)^2+7\)

Vì \(\left(2x-3\right)^2\ge0;\forall x\)

\(\Rightarrow\left(2x-3\right)^2+7\ge0+7;\forall x\)

Hay \(A\ge7;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\)

                          \(\Leftrightarrow x=\frac{3}{2}\)

Vậy MIN A=7 \(\Leftrightarrow x=\frac{3}{2}\)

Các phần khác tương tự

21 tháng 10 2017

GTNN của A = 15 \(\Leftrightarrow\)x = 1

21 tháng 10 2017

Tại sao A lại =15 vậy bạn?

\(4x^2+4x+6\)

\(=\left(2x\right)^2+2.2x.1+1+5\)

\(=\left(2x+1\right)^2+5\ge5\)

\(Min=5\Leftrightarrow2x+1=0\Rightarrow x=\frac{-1}{2}\)

\(x^2+6x+11\)

\(=x^2+2.x.3+9+2\)

\(=\left(x+3\right)^2+2\ge2\)

\(Min=2\Leftrightarrow x+3=0\Rightarrow x-3\)

\(x^2-3x+1\)

\(=x^2-2.x.\frac{3}{2}+\frac{9}{4}-\frac{5}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{5}{4}\le\frac{-5}{4}\)

\(MIn=\frac{-5}{4}\Leftrightarrow x+\frac{3}{2}=0\Rightarrow x=\frac{-3}{2}\)

3 tháng 8 2016

B = 4x2 + 4x - 6 = (2x)2 + 2.2.x + 1 - 7 = (2x + 1)2 - 7 \(\ge\)-7

             Vậy MinB = -7 khi 2x + 1 = 0 => x = -1/2 

C = x2 + 6x + 11 = x2 + 2.3.x + 9 + 2 = (x + 3)2 + 2 \(\ge\)2

              Vậy MinC = 2 khi x + 3 = 0 => x = -3

D = x2 - 3x + 1 \(=x^2-2.\frac{3}{2}.x+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+1=\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)

              Vậy MinD = -5/4 khi x - 3/2 = 0 => x = 3/2

27 tháng 7 2018

a)\(A=x^2-4x+15\)

\(A=x^2-2x-2x+4+9\)

\(A=x\left(x-2\right)-2\left(x-2\right)+9\)

\(A=\left(x-2\right)^2+9\ge9.Với\forall x\in Q\)

Dấu "=" xảy ra khi \(x-2=0\Leftrightarrow x=2\)

Vậy Min A = 9 <=> x = 2

b)\(B=x\left(x-3x\right)=x.\left(-2x\right)=-2x^2\ge0\)

Dấu "=" xảy ra khi \(x=0\)

Vậy Min B = 0 <=> x = 0

c)\(C=x^2+y^2+4x+6y+20\)

\(C=x^2+4x+4+y^2+6y+9+7\)

\(C=\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra khi : x = -2 ; y = -3

Vậy Min C = 7 <=> x = -2 ; y = -3

27 tháng 7 2018

\(A=x^2-4x+15=x^2-4x+4+11=\left(x-2\right)^2+11\)

Vì \(\left(x-2\right)^2\ge0\left(\forall x\right)\Rightarrow\left(x-2\right)^2+11\ge11\)

Dấu "=" xảy ra <=> (x-2)2 = 0 <=> x-2 = 0 <=> x=2

Vậy GTNN của biểu thức = 11 khi và chỉ khi x = 2

\(C=x^2+y^2+4x+6y+20\)

     \(=x^2+4x+4+y^2+6y+9+7\)

      \(=\left(x+2\right)^2+\left(x+3\right)^2+7\)

Vì \(\left(x+2\right)^2\ge0\left(\forall x\right);\left(y+3\right)^2\ge0\left(\forall y\right)\)

\(\Rightarrow\left(x+2\right)^2+\left(y+3\right)^2+7\ge7\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left(x+2\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x+2=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-2\\y=-3\end{cases}}}\)

Vậy GTNN của biểu thức bằng 7 khi và chỉ khi x = -2 và y = -3