Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left|3,7-x\right|+2,5\ge2,5\)
\(MinA=2,5\Leftrightarrow3,7-x=0\Rightarrow x=3,7\)
\(B=\left|x+1,5\right|+4,5\ge4,5\)
\(MinB=4,5\Leftrightarrow x+1,5=0\Rightarrow x=-1,5\)
a)\(A=\left|3,7-x\right|+2,5\)
Có\(\left|3,7-x\right|\ge0\)
\(\Rightarrow A\ge0+2,5=2,5\)
Dấu "=" xảy ra khi \( \left|3,7-x\right|=0\Rightarrow x=3,7\)
Vậy Min A = 2,5 <=> x = 3,7
b)\(B=\left|x+1,5\right|-4,5\)
Có \(\left|x+1,5\right|\ge0\)
\(\Rightarrow B\ge-4,5\)
Dấu "=" xảy ra khi x + 1,5 = 0 <=> x = -1,5
Vậy Min B = -4,5 <=> x = -1,5
A=2,5; KHI GTTT của 3.7-x =0
B=-4,5; khi GTTT của x+1,5=0
ĐÂY LÀ MK LÀM THEO BÀI CÓ ĐỀ LÀ: Tìm giá trị nhỏ nhất của nó
còn nếu bn muốn biết rõ cách làm thì bn phải viết đề ra nhé!
KẾT BẠN VS MK NHÉ!(^-^)
Đặt A= \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\) : \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
Có : \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\)
= \(\dfrac{\left(2.5-9\right).5^{21}}{\left(5^2\right)^{10}}\)= \(\dfrac{\left(10-9\right).5^{21}}{5^{20}}\)=\(\dfrac{5^{21}}{5^{20}}\)= 5 (1)
Có: \(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)
= \(\dfrac{5.\left[7^{14}.\left(3.7-19\right)\right]}{\left[7^{15}.\left(3+7\right)\right]}\)=\(\dfrac{5.7^{14}.2}{7^{15}.10}\)=\(\dfrac{10.7^{14}}{7^{15}.10}\)=\(\dfrac{1}{7}\) (2)
Từ (1) và (2) suy ra:
A= 5:\(\dfrac{1}{7}\)=5.7=35
Vậy A=35 hay \(\dfrac{2.5^{22}-9.5^{21}}{25^{10}}\):\(\dfrac{5.\left(3.7^{15}-19.7^{14}\right)}{\left(7^{16}+3.7^{15}\right)}\)= 35
Chúc học tốt nhé
Ta có:\(\left|x-7\right|\ge0\)
Nếu \(\left|x-7\right|=0\Rightarrow x=7\)
Suy ra: A = -1
Nếu \(\left|x-7\right|\ge1\Rightarrow x\ge6\)
Suy ra: A > 1
Vậy MinA = -1 khi x = 7
Áp dụng bất đẳng thức giá trị tuyệt đối |a| + |b| \(\ge\) |a + b| ta có:
A = |x - 2001| + |x - 1| = |x - 2001| + |1 - x| \(\ge\) |(x - 2001) + (1 - x)| = |-2000| = 2000
=> A nhỏ nhất là 2000 ; chẳng hạn tại x = 1
TÌm GTNN của biểu thức :
A = l x-2 l + l x+8 l
ai nhanh và đúng mình sẽ tik cho nha, mình đang gấp quá
Kuri:bạn sai 1 lỗi rất lớn đó là x ko thể nhận cùng lúc 2 giá trị vs bài này ta nên dùng BĐT |a|+|b|>=|a+b|
\(\left|x-2\right|+\left|x+8\right|\ge\left|x-2-8-x\right|=10\)
\(\Rightarrow A\ge10\)
Dấu = khi ab>=0 =>(x-2)(x+8)>=0 =>2=<x=<8
Vậy...
\(A=3,7-x+25\ge25\)
Vậy MIN A = 25 Khi :
\(3,7-x=0\)
\(=>x=3,7\)