K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2017

\(R=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+10\right)+\left(y^2+6y\right)\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+10\right)+\left(y^2+2.y.3+3^2-9\right)\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{39}{4}+\left(y+3\right)^2-9\)

\(=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)

\(\left(y+3\right)^2\ge0\forall y\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x,y\)

\(\Rightarrow R\ge\dfrac{3}{4}\forall x,y\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy ...

24 tháng 7 2017

Ta có:

\(R=x^2+y^2-x+6y+10\)

\(R=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(R=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(R\ge\dfrac{3}{4}\) với mọi giá trị của \(x;y\in R\).

Để \(R=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=-3\end{matrix}\right.\)

\Vậy..............

Chúc bạn học tốt!!!

28 tháng 8 2016

Ta có :

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

\(\Rightarrow M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Vậy ...

\(M=x^2+y^2-x+6y+10\)

\(=\left(x^2-2.x\frac{1}{2}+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10,75\)

\(=\left(x-\frac{1}{2}\right)^2+\left(x+3\right)^2+10,75\ge10,75\)

\(MinM=10,75\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}}\)

3 tháng 7 2016

\(M=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+y^2+2.3.y+9-9+10\)

\(M=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3.y+9\right)+\frac{3}{4}\)

\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)

Chọn mình nha cảm ơn chúc bạn học tốt

1 tháng 8 2017

Ta có : A = x2 + 2x + y2 + 6y + 10

=> A = (x2 + 2x + 1) + (y2 + 6y + 9)

=> A = (x + 1)2 + (y + 3)2

Mà : (x + 1)2 và (y + 3)\(\ge0\forall x,y\)

Nên : A = (x + 1)2 + (y + 3)\(\ge0\forall x,y\)

Vậy Amin = 0 tại x = -1 và y = -3

1 tháng 8 2017

\(A=x^2+2x+y^2+6y+10\)

\(=x^2+2x+y^2+6y+1+9\)

\(=\left(x^2+2x+1\right)+\left(y^2+6y+9\right)\)

\(=\left(x+1\right)^2+\left(y+3\right)^2\)

vì \(\left(x+1\right)^2\ge0\forall x;\left(y+3\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+1\right)^2+\left(y+3\right)^2\ge0\forall x\)

vậy \(MinA=0\Leftrightarrow\orbr{\begin{cases}x=-1\\y=-3\end{cases}}\)

17 tháng 7 2016

\(Q=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)

Vậy Min Q=9/2 <=> x=3/2

b) \(M=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min M=3/4 <=> x=1/2

4 tháng 8 2016

1.

\(P=x^2+6y+10+y^2-x\)

\(=x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+y^2+2\times y\times3+3^2-3^2+10\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(y+3\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Vậy Min P = \(\frac{3}{4}\) khi x = \(\frac{1}{2}\) và y = \(-3\)

2.

\(N=x-x^2\)

\(=-\left(x^2-2\times x\times\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2\right)\)

\(=-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\)

\(\left(x-\frac{1}{2}\right)^2\ge0\)

\(\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

\(-\left[\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\right]\le\frac{1}{4}\)

Vậy Max N = \(\frac{1}{4}\) khi x = \(\frac{1}{2}\)

30 tháng 8 2017

Ta có : 2x2 - 6x 

\(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)

Q\(=\left(\sqrt{2}x-6\right)^2-36\)

Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)

Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)

Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)