Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 1 chắc điểm rơi x=2;y=4, cách làm tạm thời mk chưa nghĩ ra
bài 2: P=(x^2+4y^2)/(x-2y)=[x^2+(2y)^2]/(x-2y)=[(x-2y)^2+4xy]/(x-2y)=(x-2y) + 4xy/(x-2y)=(x-2y)+4/(x-2y) do xy=1
Áp dụng bđt AM-GM , ta có P >/ 4 =>minP=4
đẳng thức xảy ra khi đồng thời x-2y=2,x>2y,xy=1 ,tự giải hệ này ra nhé
\(\left(x-5\right)\left(x-1\right)=\left(x+1\right)\left(x-7\right)\)
=> \(x^2-6x+5=x^2-6x-7\)
=> 5 = -7(đề sai rồi)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
thêm x2 + y2 + z2 = 1 nha
HT nha vinh
Vì \(3< x< 5\)
\(\Rightarrow x=4\)
Ta có : \(C=x^2-2x-5\)
\(=x^2-2x.1+1^2-1^2-5\)
\(=x^2-2x.1+1-1-5\)
\(=\left(x^2-2x.1+1\right)-1-5\)
\(=\left(x-1\right)^2-6\)
\(\Leftrightarrow\left(x-1\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2-6\ge6\)
Vậy C đạt GTNN <=> x=1
Để tìm giá trị nhỏ nhất của biểu thức GTNNH=(x-2)(x+1)(x-2)(x+5), ta cần tìm điểm cực tiểu của hàm số.
Đầu tiên, ta tính toán đạo hàm của hàm số GTNNH theo biến x:
GTNNH' = (x+1)(x-2)(x+5) + (x-2)(x+1)(x+5) + (x-2)(x+1)(x-2)
Tiếp theo, ta giải phương trình GTNNH' = 0 để tìm các điểm cực trị của hàm số:
(x+1)(x-2)(x+5) + (x-2)(x+1)(x+5) + (x-2)(x+1)(x-2) = 0
Sau khi giải phương trình trên, ta thu được các giá trị của x là -5, -1 và 2.
Tiếp theo, ta tính giá trị của GTNNH tại các điểm cực trị và so sánh để tìm giá trị nhỏ nhất:
GTNNH(-5) = (-5-2)(-5+1)(-5-2)(-5+5) = 0
GTNNH(-1) = (-1-2)(-1+1)(-1-2)(-1+5) = 0
GTNNH(2) = (2-2)(2+1)(2-2)(2+5) = 0
Như vậy, giá trị nhỏ nhất của biểu thức GTNNH=(x-2)(x+1)(x-2)(x+5) là 0.