Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2x^2+4y^2+4xy-2x+4y+2022\)
\(A=x^2+x^2+4y^2+4xy-2x+4y+2022\)
\(A=\left(x^2+4xy+4y^2\right)+\left(2x+4y\right)+x^2-4x+4+2018\)
\(A=\left(x+2y\right)^2+2\left(x+2y\right)+1+\left(x-2\right)^2+2017\)
\(A=\left(x+2y+1\right)^2+\left(x-2\right)^2+2017\)
Đến đây tự làm đc rồi :))
Ta có
A=2x2+4y2-4x+4xy+2020
=(x^2+4y^2+4xy)+(x^2-4x+4)+2016
=(x+2y)^2+(x-2)^2+2016
Thấy
(x+2y)^2>=0 với mọi x,y
(x-2)^2>=0 với mọi x
=>(x+2y)^2+(x-2)^2+2016>=2016 với mọi x,y
Hay Min A>=2016
Dấu "=" xảy ra<=>(x+2y)^2=0 và(x-2)^2=0
<=>x=2;y=-1
Vậy Min A=2016 tại x=2 và y=-1
\(M=x^2+4x+4+y^2-4y=\left(2x^2+4x+2\right)+\left(y^2-4y+4\right)-2\)
\(=2\left(x+1\right)^2+\left(y-2\right)^2-2\ge-2\)
d) D = x4 - 6x2 + 10
D = (X2)2 - 2. x2. 3 + 32 + 1
D = (x2 - 3)2 + 1
(x2 - 3)2 >= 0 với mọi x
(x2 - 3)2 + 1 >=1 với moi5 x
Vậy GTNN của D là 1
Ta có: A = 2x2 + 4y2 - 4xy - 4x - 4y + 15
= (x2 - 4xy + 4y2) + 2(x - 2y) + 1 + (x2 - 6x + 9) + 5
= (x - 2y)2 + 2(x - 2y) + 1 + (x - 3)2 + 5
= (x - 2y + 1)2 + (x - 3)2 + 5 \(\ge\)5 \(\forall\)x; y
Daaus "=" xảy ra <=> \(\left\{{}\begin{matrix}x-2y+1=0\\x-3=0\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}y=\frac{x+1}{2}\\x=3\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
Vậy MinA = 5 khi x = 3 và y = 2
\(=2\left(x^2-2xy+y^2-2x+2y+1\right)+2\left(y^2-4y+4\right)+5\)
\(=\left(y-x+1\right)^2+2\left(y-2\right)^2+5\ge5\)
Vậy MIN=5 khi \(\left\{{}\begin{matrix}y=2\\x=3\end{matrix}\right.\)
a, \(P=2x^2+5y^2+4xy+8x-4y+15\)
\(=\left(x+2y\right)^2+\left(x+4\right)^2+\left(y-2\right)^2-5\)\(\ge-5\)
Dấu "="xảy ra khi:\(\hept{\begin{cases}\left(x+2y\right)^2=0\\\left(x+4\right)^2=0\\\left(y-2\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-4\\y=2\end{cases}}\)
Vậy...
b, \(C=2x^2+4xy+4y^2-3x-1\)
\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{5}{4}\ge-\frac{5}{4}\)
sau đó giải tương tự câu a nhé
1) (x-1)2 + (x- 4y)2 + (y + 2)2 +10 -1-4
GTNN = 5
2) tuong tu