K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 9 2019

Đặt \(A=\frac{x^2}{x-1}\left(x>1\right)\)

\(A=\frac{x^2-1+1}{x-1}\)

\(A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}\)

\(A=x+1+\frac{1}{x-1}\)

\(A=x-1+\frac{1}{x-1}+2\)

Áp dụng BĐT Cauchy cho các số dương ta có :

\(x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2\)

\(\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4\)

\(\Leftrightarrow A_{min}=4\)

Đẳng thức xảy ra khi và chỉ khi : \(x-1=\frac{1}{x-1}\Leftrightarrow x=2\)

Chúc bạn học tốt !!!

29 tháng 9 2019

Đặt A=\frac{x^2}{x-1}\left(x>1\right)A=x−1x2​(x>1)

A=\frac{x^2-1+1}{x-1}A=x−1x2−1+1​

A=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{1}{x-1}A=x−1(x−1)(x+1)​+x−11​

A=x+1+\frac{1}{x-1}A=x+1+x−11​

A=x-1+\frac{1}{x-1}+2A=x−1+x−11​+2

Áp dụng BĐT Cauchy cho các số dương ta có :

x-1+\frac{1}{x-1}+2\ge2\sqrt{\left(x-1\right).\frac{1}{\left(x-1\right)}}+2x−1+x−11​+2≥2(x−1).(x−1)1​​+2

\Leftrightarrow x-1+\frac{1}{x-1}+2\ge2+2=4⇔x−1+x−11​+2≥2+2=4

\Leftrightarrow A_{min}=4⇔Amin​=4

Đẳng thức xảy ra khi và chỉ khi : x-1=\frac{1}{x-1}\Leftrightarrow x=2x−1=x−11​⇔x=2

7 tháng 8 2016
  • \(A=\frac{x^2+2x+3}{x+1}=\frac{\left(x^2+2x+1\right)+2}{x+1}=\frac{\left(x+1\right)^2+2}{x+1}=\left(x+1\right)+\frac{2}{x+1}\)

Áp dụng bđt Cauchy : \(x+1+\frac{2}{x+1}\ge2.\sqrt{\left(x+1\right).\frac{2}{x+1}}=2\sqrt{2}\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x>-1\\x+1=\frac{2}{x+1}\end{cases}\Leftrightarrow}x=\sqrt{2}-1\)

Vậy Min A = \(2\sqrt{2}\)tại \(x=\sqrt{2}-1\)

  • B không tìm được GTNN
26 tháng 8 2017

Hình chữ nhật ABCD và hình bình hành ABEF có đáy chung là AB và có chiều cao bằng nhau, vậy chúng có diện tích bằng nhau.

Suy ra cách vẽ một hình chữ nhật có cùng diện tích với một hình bình hành cho trước:

- Lấy nột cạnh của hình bình hành ABEF làm một cạnh của hình chữ nhật cần vẽ, chẳng hạn cạnh AB.

- Vẽ đường thẳng EF.

- Từ A và b vẽ các đường thẳng vuông góc với đường thẳng EF, chúng cắt đường thẳng EF lần lượt tại D, C. vẽ các đoạn thẳng AD,

BC. ABCD là hình chữ nhật có cùng diện tích với hình bình hành ABEF đã cho

0

7 tháng 1 2017

\(A=\frac{x^2}{x-1}< 0\Rightarrow x>1\)

\(A-4=\frac{x^2}{x-1}-4=\frac{x^2-4x+4}{x-1}=\frac{\left(x-2\right)^2}{\left(x-1\right)}\ge0\\ \) khi x>1

\(\Rightarrow A\ge4\)

GTNN=4 khi x=2

5 tháng 6 2016

Để E > 1 

Thì \(\frac{x^2}{x-1}\)>1

<==>\(x-1\)>0

<==>x > 1

Vậy x > 1 thì E > 1

11 tháng 5 2019

Áp dụng 2 bất đẳng thức phụ:

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)

\(xy\le\frac{\left(x+y\right)^2}{4}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)

Áp dụng vào bài toán,ta có:

\(x^2+y^2\ge2\)

\(xy\le1\Leftrightarrow\frac{1}{xy}\ge1\)

Khi đó,ta có:\(x^2+y^2+\frac{1}{xy}\ge3\)

Dấu "=" xảy ra khi \(x=y=1\)

11 tháng 5 2019

Thêm 2 vào bớt 2 ra biến đổi và dùng Cô si là xong ạ? + Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) (cũng là hệ quả của cô si thôi)

Ta có: \(P=x^2+y^2+\frac{1}{xy}=\left(x^2+1\right)+\left(y^2+1\right)+\frac{1}{xy}-2\)

\(\ge2x+2y+\frac{1}{\frac{\left(x+y\right)^2}{4}}-2=2\left(x+y\right)+\frac{4}{\left(x+y\right)^2}-2\)

\(=2.2+\frac{4}{2^2}-2=5-2=3\)

Dấu "=" xảy ra khi x = y = 1

Vậy \(P_{min}=3\Leftrightarrow x=y=1\)

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6

25 tháng 11 2016

A-2=\(\left(\sqrt{x-y}-\sqrt{\frac{2}{x-y}}\right)^2+2\sqrt{2}\)

A>=2\(\left(1+\sqrt{2}\right)\)

dang thuc xay ra khi

x-y=\(\sqrt{2}\)

25 tháng 11 2016

chua hieu nhan tin