K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
18 tháng 9 2020

Sau dấu + cuối cùng là số nào thế bạn? Đề có vẻ viết chưa được đầy đủ.

18 tháng 9 2020

3

10 tháng 9 2017

TXĐ: D=R

y=4sin2x-4sinx+1+2

=(2sinx-1)2+2

Ta có:

-1\(\le\)sinx\(\le\)1

<=>-2\(\le\)2sinx\(\le\)2

<=>-3\(\le\)2sinx-1\(\le\)1

<=>0\(\le\)(2sinx-1)2\(\le\)1

<=>2\(\le\)(2sinx-1)2+2\(\le\)3

<=>2\(\le\)y\(\le\)11

=>Maxy=3<=>sinx=1<=>x=\(\dfrac{\Pi}{2}\)+k2\(\Pi\)

Miny=2<=>sinx=1/2<=>\(\left[{}\begin{matrix}x=\dfrac{\Pi}{6}+k2\Pi\\x=\dfrac{5\Pi}{6}+k2\Pi\end{matrix}\right.\)

10 tháng 9 2017

à sai 1 chỗ là 2\(\le\)y\(\le\)3 nhé sửa lại giùm

NV
20 tháng 9 2020

1.

Các hàm \(sinx;sin\frac{x}{2};sin\frac{x}{3};...;sin\frac{x}{10}\) có chu kì lần lượt là \(2\pi;4\pi;6\pi;...;20\pi\)

\(\Rightarrow\) Chu kì của hàm đã cho là \(BCNN\left(2\pi;4\pi;...;20\pi\right)=15120\pi\)

2.

a.

\(y=cos^22x+3cos2x+3\)

\(y=\left(cos2x+1\right)\left(cos2x+2\right)+1\ge1\Rightarrow y_{min}=1\) khi \(cos2x=-1\)

\(y=\left(cos2x-1\right)\left(cos2x+4\right)+7\le7\Rightarrow y_{max}=7\) khi \(cos2x=1\)

b.

Đặt \(a=4sinx-3cosx\Rightarrow a^2\le\left(4^2+\left(-3\right)^2\right)\left(sin^2x+cos^2x\right)=25\)

\(\Rightarrow-5\le a\le5\)

\(y=a^2-4a+1\) với \(a\in\left[-5;5\right]\)

\(y=\left(a-2\right)^2-3\ge-3\Rightarrow y_{min}=-3\) khi \(a=2\)

\(y=\left(a-9\right)\left(a+5\right)+46\le46\Rightarrow y_{max}=46\) khi \(a=-5\)

21 tháng 9 2020

Em ko hiểu câu 2a

15 tháng 9 2020

câu b lập bảng biến thiên đc ko

NV
15 tháng 9 2020

a.

\(0\le sin^2x\le1\Rightarrow\frac{4}{3}\le y\le4\)

\(y_{max}=4\) khi \(sinx=0\)

\(y_{min}=\frac{4}{3}\) khi \(sin^2x=1\)

b.

Đặt \(4sinx-3cosx=5\left(\frac{4}{5}sinx-\frac{3}{5}cosx\right)=5sin\left(x-a\right)=t\)

\(\Rightarrow-5\le t\le5\)

\(\Rightarrow y=t^2-4t+1=\left(t-2\right)^2-3\ge-3\)

\(y_{min}=-3\) khi \(t=2\)

\(y=t^2-4t-45+46=\left(t-9\right)\left(t+5\right)+46\le46\)

\(y_{max}=46\) khi \(t=-5\)

17 tháng 9 2021

a, \(y=3-4sin^2x.cos^2x=3-sin^22x\)

Đặt \(sin2x=t\left(t\in\left[-1;1\right]\right)\).

\(\Rightarrow y=f\left(t\right)=3-t^2\)

\(\Rightarrow y_{min}=minf\left(t\right)=2\)

\(y_{max}=maxf\left(t\right)=3\)

17 tháng 9 2021

b, \(y=f\left(t\right)=\dfrac{-2}{3t-5}\left(t\in\left[0;1\right]\right)\)

\(\Rightarrow y_{min}=minf\left(t\right)=\dfrac{2}{5}\)

\(y_{max}=maxf\left(t\right)=1\)

NV
15 tháng 9 2020

a/ \(x\in\left(-\frac{\pi}{3};\frac{2\pi}{3}\right)\Rightarrow-\frac{\sqrt{3}}{2}< sinx\le1\)

\(\Rightarrow0\le sin^2x\le1\)

\(\Rightarrow-1\le3-4sin^2x\le3\)

\(y_{min}=-1\) khi \(x=\frac{\pi}{2}\)

\(y_{max}=3\) khi \(x=0\)

b/ \(y=cos^2x-2\left(2cos^2x-1\right)=2-3cos^2x\)

\(\frac{\pi}{6}\le x\le\frac{7\pi}{6}\Rightarrow-1\le cosx\le\frac{\sqrt{3}}{2}\Rightarrow0\le cos^2x\le1\)

\(\Rightarrow-1\le2-3cos^2x\le2\)

\(y_{min}=-1\) khi \(x=\pi\)

\(y_{max}=2\) khi \(x=\frac{\pi}{2}\)