K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2016

Ta có \(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2-3ab+3b^2}{3a^2+3ab+b^2}=\frac{a^2+ab+b^2+2a^2-4ab+2b^2}{3a^2+3ab+3b^2}\) \(=\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\)

. Xét \(a^2+ab+b^2\) \(=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\) 

. Suy ra \(\frac{1}{3}+\frac{2\left(a-b\right)^2}{3a^2+3ab+3b^2}\ge\frac{1}{3}\) => \(MinQ=\frac{1}{3}\) khi \(a=b\)

\(Q=\frac{a^2-ab+b^2}{a^2+ab+b^2}=\frac{3a^2+3ab+3b^2-2a^2-4ab-2b^2}{a^2+ab+b^2}\) \(=3-\frac{2\left(a+b\right)^2}{a^2+ab+b^2}\le3\)

. Suy ra \(MaxQ=3\) khi \(a=-b\)

. Kết luận ^^

10 tháng 3 2017

ta có : 3-Q=\(\dfrac{2\left(a+b\right)^2}{a^2+ab+b^2}\)>=0

\(\Rightarrow\) Max Q=3

ta có : Q-\(\dfrac{1}{3}\)= \(\dfrac{2\left(a-b\right)^2}{3\left(a^2+ab+b^2\right)}\)>=0

\(\Rightarrow\)Min Q=\(\dfrac{-1}{3}\)

10 tháng 3 2017

Hãy dùng phương pháp tập thể dục như của Hung nguyen nhé

Theo bài ra , ta có :

\(Q=\dfrac{a^2-ab+b^2}{a^2+ab+b^2}=\dfrac{a^2+ab+b^2-2ab}{a^2+ab+b^2}=1-\dfrac{2ab}{a^2+ab+b^2}\)

Vì a,b đồng thời không bằng không ta chia cả tử và mẩu cho 2ab , ta được

\(\dfrac{2a}{a^2+ab+b^2}=\dfrac{1}{\dfrac{a^2}{2ab}+1+\dfrac{b^2}{2ab}}=\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\)

Vì a,b khác 0 =) a/2b , b/2a khác 0

Áp dụng BĐT cô si cho 2 số a/2b , b/2a khác 0

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{a}{2b}.\dfrac{b}{2a}}\)

\(\Rightarrow\dfrac{a}{2b}+\dfrac{b}{2a}\ge2\sqrt{\dfrac{1}{2}}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{a}{2b}+1+\dfrac{b}{2a}\ge1+\dfrac{1}{4}=\dfrac{5}{4}\)

\(\Leftrightarrow\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{\dfrac{5}{4}}=\dfrac{4}{5}\)

\(\Leftrightarrow1-\dfrac{1}{\dfrac{a}{2b}+1+\dfrac{b}{2a}}\le\dfrac{1}{5}\)

\(\Rightarrow Max_Q=\dfrac{1}{5}\Leftrightarrow\dfrac{a}{2b}=\dfrac{b}{2a}\Leftrightarrow\dfrac{a}{2b}-\dfrac{b}{2a}=0\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=0\Leftrightarrow\left[{}\begin{matrix}a=b\\a=-b\end{matrix}\right.\)

mà a và b là hai số khác 0 =) a = b

Vậy GTLN của Q là 1/5 khi và chỉ khi a = b

NM
9 tháng 8 2021

ta có \(4=2a^2+\frac{b^2}{4}+\frac{1}{a^2}=a^2+a^2+\frac{b^2}{4}+\frac{1}{a^2}\ge4\sqrt[4]{\frac{a^2.a^2.b^2}{4a^2}}\)

Vậy\(\sqrt[4]{\frac{a^2b^2}{4}}\le1\Leftrightarrow a^2b^2\le4\Leftrightarrow-2\le ab\le2\)

Vậy \(2007\le ab+2009\le2011\)

8 tháng 2 2017

đồng thời = 9 thì sao nhỉ?

8 tháng 2 2017

maximize=3 khi b=-a

minimize =1/3 khi a=b

rảnh thì làm cho h fai ngủ r` (:|

DD
9 tháng 3 2021

\(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)

\(S=\frac{a^2+b^2}{ab}\ge\frac{2ab}{ab}=2\)

Dấu \(=\)xảy ra khi \(a=b\).

Vậy \(minS=2\).

9 tháng 3 2021

\(S=\frac{a^2+b^2}{ab}=\frac{a^2}{ab}+\frac{b^2}{ab}\ge\frac{\left(a+b\right)^2}{2ab}\)( Cauchy-Schwarz dạng Engel )

Lại có : \(2ab\le\frac{\left(a+b\right)^2}{2}\)( AM-GM )

\(\Rightarrow\frac{1}{2ab}\ge\frac{1}{\frac{\left(a+b\right)^2}{2}}=\frac{2}{\left(a+b\right)^2}\Rightarrow\frac{\left(a+b\right)^2}{2ab}\ge2\)

Dấu "=" xảy ra <=> a = b

Vậy MinS = 2

AH
Akai Haruma
Giáo viên
27 tháng 7 2024

Lời gải:

Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:

$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$

$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$

$=\frac{25}{2(a^2+b^2+2ab)+2ab}$

$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$

Vậy  $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$