K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
28 tháng 7 2020

Lời giải:

Đặt $A=2x^2+2xy+3y^2-8x-2y+1$

$\Leftrightarrow 2x^2+2x(y-4)+(3y^2-2y+1-A)=0(*)$

Cội đây là PT bậc 2 ẩn $x$. $A$ tồn tại nghĩa là PT $(*)$ tồn tại nghiệm

$\Rightarrow \Delta'=(y-4)^2-2(3y^2-2y+1-A)\geq 0$

$\Leftrightarrow 2A\geq 5y^2+4y-14$

Mà $5y^2+4y-14=5(y+\frac{2}{5})^2-\frac{74}{5}\geq \frac{-74}{5}$

$\Rightarrow 2A\geq \frac{-74}{5}$

$\Rightarrow A\geq \frac{-37}{5}$

Vậy $A_{\min}=\frac{-37}{5}$

25 tháng 11 2016

mấy bn ơi, giúp mk nhanh vs nha!!!!!!!!!!!

25 tháng 11 2016

a/ A = 2x2 + y2 - 2xy - 2x + 3

= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2

= (x - y)2 + (x - 1)2 + 2\(\ge2\)

23 tháng 7 2023

\(...P=x^2-8x+16+x^2+2xy+y^2+2y^2-2y+2\)

\(P=\left(x-4\right)^2+\left(x+y\right)^2+2\left(y^2-y+1\right)\left(1\right)\)

Xét \(y^2-y+1=y^2-y+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\left(\left(y-\dfrac{1}{2}\right)^2\ge0\right)\)

\(\Rightarrow2\left(y^2-y+1\right)\ge2.\dfrac{3}{4}=\dfrac{3}{2}\)

mà \(\left(x-4\right)^2\ge0;\left(x+y\right)^2\ge0\)

\(\left(1\right)\Rightarrow P\ge\dfrac{3}{2}\Rightarrow Min\left(P\right)=\dfrac{3}{2}\)

5 tháng 8 2017

a)  ... = (x^2 -2xy + y^2)+(x^2 -2x+1)+2014=(x-y)^2 + (x-1)^2 +2014 >= 2014 

Đăngt thức xay ra khi x=y=1

28 tháng 9 2020

A = x2 - 2xy + 3y2 - 2x + 1997

= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 2y2 - 2y + 1/2 ) + 3991/2

= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 2( y2 - y + 1/4 ) + 3991/2

= [ ( x - y )2 - 2( x - y ) + 12 ] + 2( y - 1/2 )2 + 3991/2

= ( x - y - 1 )2 + 2( y - 1/2 )2 + 3991/2 ≥ 3991/2 ∀ x, y

Dấu "=" xảy ra <=> x = 3/2 ; y = 1/2

=> MinA = 3991/2 <=> x = 3/2 ; y = 1/2

23 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

NM
16 tháng 10 2021

ta có : 

undefined

2x^2 + 3y^2 + 4xy - 8x - 2y + 18

= 2x^2 + 4xy - 8x +3y^2 - 2y + 18

=2( x^2 + 2xy -4x ) + 3y^2 - 2y +18

=2( x^2 + 2x( y - 2)) + 3y^2 - 2y + 18

=2(x + y - 2)^2 +3y^2 -2y +18 - 2(y - 2)^2

=2(x +y -2)^2 +3y^2 -2y +18- 2y^2 -8y -8

=2(x +y -2)^2 +y^2 - 10y + 10

Phần còn lại tự làm nhé

21 tháng 3 2018

Ta có:\(A=2x^2+3y^2+4xy-8x-2y+18\)

\(A=2\left(x^2+2xy+y^2\right)-8\left(x+y\right)+8+y^2+6y+9+1\)

\(A=2\left[\left(x+y\right)^2-4\left(x+y\right)+4\right]+\left(y+3\right)^2+1\)

\(A=2\left(x+y-2\right)^2+\left(y+3\right)^2+1\ge1\)

\(\Rightarrow MINA=1\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=-3\end{matrix}\right.\)

21 tháng 8 2024

m666666

15 tháng 1 2018

2A = 4x^2+6y^2+8xy-16x-4y+36

     = [(4x^2+8xy+4y^2)-2.(2x+2y).4+16]+(2y^2+12y+18)+2

     = (2x+2y-4)^2+2.(y+3)^2+2 >= 2

=> A >= 1

Dấu "=" xảy ra <=> 2x+2y-4=0 và y+3=0 <=> x=5 và y=-3

Vậy GTNN của A = 1 <=> x=5 và y=-3

Tk mk nha