K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{\left(a+b\right)}{ab}=\frac{9}{ab}\)

de dc gtnn thi ab phai lon nhat=>

theo bdt cosi ta co:\(a+b>=2\sqrt{ab}\Rightarrow\left(a+b\right)^2>=4ab\Rightarrow\frac{9^2}{4}=\frac{81}{4}>=ab\)

=>\(\frac{9}{ab}\)>=\(9:\frac{81}{4}\)=>\(\frac{9}{ab}>=\frac{4}{9}\)=>gtnn=4/9 xay ra dau = khi a=b=9/2

26 tháng 5 2016

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))

10 tháng 3 2020

Em dùng AM-GM nhá,em ko dùng cosi đâu ha :)

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{x}}=\left(\frac{x}{\sqrt{y}}+\sqrt{y}\right)+\left(\frac{y}{\sqrt{x}}+\sqrt{x}\right)-\left(\sqrt{x}+\sqrt{y}\right)\)

\(\ge2\sqrt{x}+2\sqrt{y}-\left(\sqrt{x}+\sqrt{y}\right)=\sqrt{x}+\sqrt{y}\)

Lại có:

\(S=\frac{x}{\sqrt{1-x}}+\frac{y}{\sqrt{1-y}}\)

\(=\frac{1-y}{\sqrt{y}}+\frac{1-x}{\sqrt{x}}=\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}-\sqrt{x}-\sqrt{y}\)

Khi đó:\(2S\ge\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\ge\frac{2}{\sqrt[4]{xy}}\ge\frac{2}{\sqrt{\frac{x+y}{2}}}=2\sqrt{2}\Rightarrow S\ge\sqrt{2}\)

Dấu "=" xảy ra tại x=y=1/2

20 tháng 8 2017

mình ko biết, bạn k nha

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

3 tháng 8 2016

P đạt giá trị nhỏ nhất \(\Leftrightarrow\frac{1}{P}\)đạt giá trị lớn nhất.

Xét : \(\frac{2}{P}=\frac{x^2+x+1}{x}=x+\frac{1}{x}+1\). Áp dụng bđt Cauchy với hai số không âm x và 1/x được : 

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow\frac{2}{P}\ge3\Leftrightarrow P\le\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x\ge0\\x=\frac{1}{x}\end{cases}\Leftrightarrow}x=1\)

Vậy Min P = 2/3 tại x = 1

3 tháng 8 2016

GTNN

\(P=\frac{2x}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\ge0\)

GTLN

\(P=\frac{2}{\frac{x^2+x+1}{x}}=\frac{2}{x+\frac{1}{x}+1}\le\frac{2}{2\sqrt{x.\frac{1}{x}}+1}=\frac{2}{3}\)

Dấu bằng xảy ra khi \(x=\frac{1}{x}\Leftrightarrow x=1\)

21 tháng 7 2016

Áp dụng BĐT Cô - si cho hai số không âm ta được

\(x^2+3+\frac{1}{x^2+3}\ge2\sqrt{\left(x^2+3\right)\cdot\frac{1}{x^2+3}}=2\sqrt{1}=2\)

Dấu = xảy ra \(\Leftrightarrow x^2+3=\frac{1}{x^2+3}\)

\(\Leftrightarrow\left(x^2+3\right)^2=1\)

\(\Leftrightarrow x^4+6x^2+9=1\)

\(\Leftrightarrow x^4+6x^2+8=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(x^2+4\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)=0\) hoặc \(\left(x^2+4\right)=0\)

\(\Leftrightarrow x^2=-2\) hoặc \(x^2=-4\) (vô nghiệm) (Sai đề r hay s á b, mik nghĩ là \(x^2-3\)ms đúng)

Vậy GTNN của M là 2 

4 tháng 11 2017
Đừng bumhiacopski chủ giá