K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2016

a) \(x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)

Vì: \(\left(x+1\right)^2\ge0\) , với mọi x

=> \(\left(x+1\right)^2+1\ge1\)

Vậy GTNN của bt đã cho là 1 khi \(x+1=0\Leftrightarrow x=-1\)

b) \(4x^2-x+1=4\left(x^2-\frac{x}{4}+\frac{1}{64}\right)+\frac{15}{16}=4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\)

Vì: \(4\left(x-\frac{1}{8}\right)^2\ge0\), vói mọi x

=> \(4\left(x-\frac{1}{8}\right)^2+\frac{15}{16}\ge\frac{15}{16}\)

Vậy GTNN của bt trên là \(\frac{15}{16}\) khi \(x=\frac{1}{8}\)

c) \(3x^2-2x+1=3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{2}{3}=3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\)

Vì: \(3\left(x-\frac{1}{3}\right)^2\ge0\), với mọi x

=> \(3\left(x-\frac{1}{3}\right)^2+\frac{2}{3}\ge\frac{2}{3}\)

Vậy GTNN của bt đã cho là \(\frac{2}{3}\) khi \(x=\frac{1}{3}\)

19 tháng 7 2016

AI BIET THI GIUP MK VS NHA

19 tháng 7 2016

a)  \(=\left(x^2+3x+1\right)^2-2\left(x^2+3x+1\right)\left(3x-1\right)+\left(3x-1\right)^2\)

       \(=\left(x^2+3x+1-3x+1\right)^2\)

        \(=\left(x^2+2\right)^2\)

b)  \(=\left[\left(3x^3+1\right)^2-\left(3x\right)^2\right]-\left(3x^2+1\right)^2\)

      \(=-\left(3x\right)^2=9x^2\)

c)\(=\left[\left(2x^2+1\right)^2-\left(2x\right)^2\right]-\left(2x^2+1\right)^2\)

    \(=-\left(2x\right)^2=4x^2\)

     

6 tháng 6 2019

Theo mình nghĩ thì phải là giá trị lớn nhất

A=-(x^2-4x+5)

A=-[(x-2)^2+1]

Mà (x-2)^2+1>=1

Nên A<=-1

B=-(x^2+6x-1)

B=-[(x+3)^2-10]

nên B<=10

C=-(x^2+3x+2)

C=-(x^2+3x+9/4-1/4)

C=-[(x+3/2)^2-1/4]

Nên C<=1/4

D=-(2x^2-3x+1)

D=-2(x^2-3x/2+1/2)

D=-2(x^2-3x/2+9/16-1/16)

D=-2[(x-3/2)^2-1/16]

Nên D<=1/8

Chúc bạn học tốt!

êu cô ra sai đề phải GTLN mới làm đc

19 tháng 7 2017

Ta có : x2 + 4x 

= x2 + 4x + 4 - 4

= (x + 2)2 - 4 

Mà ; (x + 2)\(\ge0\forall x\)

Nên : (x + 2)2 - 4 \(\ge-4\forall x\)

Vậy GTNN của biểu thức là -4 khi x = -2

19 tháng 7 2017

Ta có : 4x2 - 4x - 1

= (2x)2 - 4x + 1 - 1

= (2x - 1)2 - 1

Mà : (2x - 1)2 \(\ge0\forall x\)

Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)

Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)

19 tháng 7 2017

giúp mấy câu tiếp theo với

16 tháng 9 2018

\(a,A=x^2+2x-3=\left(x^2+2x+1\right)-4=\left(x+1\right)^2-4\ge-4\)

Dấu = xảy ra \(\Leftrightarrow x=-1\)

Vậy \(Min_A=-4\Leftrightarrow x=-1\)

\(b,B=2x^2-x+1=-\left(x^2-2x+1\right)+2=-\left(x-1\right)^2+2\le2\)

Dấu = xảy ra \(\Leftrightarrow x=1\)

Vậy \(Max_B=2\Leftrightarrow x=1\)

\(c,C=-3x^2+3x+1=-3\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{7}{4}=-3\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}\le\dfrac{7}{4}\)

Dấu = xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Vậy \(Max_C=\dfrac{7}{4}\Leftrightarrow x=\dfrac{1}{2}\)

\(d,D=-4x^2+2x+3=-4\left(x^2-\dfrac{1}{2}x+\dfrac{1}{16}\right)+\dfrac{13}{4}=-4\left(x-\dfrac{1}{4}\right)^2+\dfrac{13}{4}\le\dfrac{13}{4}\)

\(Max_D=\dfrac{13}{4}\Leftrightarrow x=\dfrac{1}{4}\)

16 tháng 9 2018

-Tìm GTNN :

a) A= (x2 + 2.x.1 + 12) - 4 = (x + 1)2 - 4

Do (x+1)2 ≥ 0 ⇒ (x+1)2 - 4 ≥ (-4)

⇒ A đạt GTNN ⇔ (x+1)2 = 0 ⇒ x+1= 0 ⇒ x= -1

Vậy A đạt GTNN là -4 ⇔ x= -1

20 tháng 1 2018

Ta có: \(A=2x^2-8x+1=2x^2-2.2x.2+2^2-3\)

                                                   \(=\left(2x-2\right)^2-3\)

Vì \(\left(2x-2\right)^2\ge0\left(\forall x\right)\)

\(\Rightarrow A=\left(2x-2\right)^2-3\le-3\left(\forall x\right)\)

Dấu "=" xảy ra khi \(2x-2=0\Rightarrow x=1\)

Vậy Amax = -3 khi x = 1

20 tháng 1 2018

Ta có \(B=-5x^2-4x+1=-5\left(x^2+\frac{4}{5}x-\frac{1}{5}\right)=-5\left(x^2+2.\frac{2}{5}x+\frac{4}{25}-\frac{9}{25}\right)=-5\left(x+\frac{2}{5}\right)^2+\frac{9}{5}\ge\frac{9}{5}\forall x\)

Dấu "=" xảy ra khi x+2/5=0 => x=-2/5

Vậy GTNN của B là 9/5 khi x=-2/5

3 tháng 9 2016

trời đất, học hằng đẳng thức chưa, chưa hc thì thôi, học rồi thì áp dụng vs bài này như ăn cháo thôi chứ có j đâu phải hỏi

a: \(A=x^2-3x+\dfrac{9}{4}+\dfrac{11}{4}=\left(x-\dfrac{3}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Dấu '=' xảy ra khi x=3/2

b: \(B=4x^2-4x+1+x^2+4x+2\)

\(=5x^2+3>=3\)

Dấu '=' xảy ra khi x=0

d: \(D=-\left(x^2-4x+4-4\right)=-\left(x-2\right)^2+4< =4\)

Dấu '=' xảy ra khi x=2