Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(B=x\left(x-2\right)y\left(y+6\right)+12x^2-24x+3y^2+18y+36\)
\(=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2+6y+12\right)+12\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+12\)
\(=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+12\ge2.3+12=18\)
a,Ta có: \(2A=4x^2+4xy+2y^2-4x+4y+4\)
\(=4x^2+2x\left(y-2\right)+\left(y-2\right)^2+y^2+8y+16-20\)
\(=\left(2x+y-2\right)^2+\left(y+4\right)^2-20\)
Vì \(\left\{{}\begin{matrix}\left(2x+y-2\right)^2\ge0\\\left(y+4\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow2A\ge-20\Rightarrow A\ge-10\)
Dấu ''='' xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-4\end{matrix}\right.\)
Vậy ....
c,Ta có:\(4C=4x^2+4xy+4y^2-12x-12y\)
\(=4x^2+2.2x\left(y-3\right)+\left(y-3\right)^2-\left(y-3\right)^2+4y^2-12y\)
\(=\left(2x+y-3\right)^2+3\left(y^2-2y+1\right)-12\)
\(=\left(2x+y-3\right)^2+3\left(y-1\right)^2-12\)
Vì \(\left\{{}\begin{matrix}\left(2x+y-3\right)^2\ge0\\3\left(y-1\right)^2\ge0\end{matrix}\right.\) \(\Rightarrow4C\ge-12\Rightarrow C\ge-3\)
Dấu ''='' xảy ra \(\Leftrightarrow x=y=1\)
Vậy ...
\(A=xy\left(x-2\right)\left(y+6\right)+12x^2-24x+3y^2+18y+2047\)
\(=xy\left(x-2\right)\left(y+6\right)+12\left(x^2-2x\right)+3y\left(y+6\right)+2047\)
\(=y\left(y+6\right)\left(x^2-2x\right)+12\left(x^2-2x+3\right)+3y\left(y+6\right)+2011\)
\(=y\left(y+6\right)\left(x^2-2x+3\right)+12\left(x^2-2x+3\right)+2011\)
\(=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2011\)
\(=\left[\left(x-1\right)^2+2\right].\left[\left(y+3\right)^2+3\right]+2011\ge2.3+2011=2017\)
Dấu "=" xảy ra khi:
\(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)
Vậy GTNN của A là 2017 khi \(x=1,y=-3\)
Câu a, b, c thì đơn giản òi. Câu d phải chú ý điểm rơi:v
d) Ta có: \(D=\left(x-\frac{1}{2}\right)^4+\frac{1}{2}\left(3x^2-3x+\frac{15}{8}\right)\)
\(=\left(x-\frac{1}{2}\right)^4+\frac{3}{2}\left(x-\frac{1}{2}\right)^2+\frac{9}{16}\ge\frac{9}{16}\)
Đẳng thức xảy ra khi x = 1/2
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3