Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
G = (x - 3)^2 + |x^2 - 9| + 25
có (x - 3)^2 > 0 và |x^2 - 9| > 0
=> G > 25
xét G = 25 khi :
(x - 3)^2 = 0 và |x^2 - 9| = 0
=> x - 3 = 0 và x^2 - 9 = 0
=> x = 3 và x^2 = 9
=> x = 3 và x = + 3
=> x = 3
vậy Min G = 25 khi x = 3
\(G=\left(x-3\right)^2+|x^2-9|+25\)
Ta có:\(\left(x-3\right)^2\ge0;|x^2-9|\ge0\)
\(\Rightarrow G\ge25\)
Nếu G=25 thì \(\hept{\begin{cases}\left(x-3\right)^2=0\\|x^2-9|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-3=0\\x^2-9=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=3\\x=\pm3\end{cases}}\Rightarrow x=3}\)
Vậy GTNN của G=25 đạt được khi x=3
a) ta có : \(\left(x+1\right)^{2018}\ge0\) với mọi x \(\Rightarrow A=4-\left(x+1\right)^{2018}\le4\) với mọi x
\(\Rightarrow GTLN\) của A là 4 khi \(\left(x+1\right)^{2018}=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
vậy \(GTLN\) của A là 4 khi \(x=-1\)
b) ta có : \(\left(x-3\right)^2\ge0\) với mọi x \(\Rightarrow B=\left(x-3\right)^2-2017\ge-2017\) với mọi x
\(\Rightarrow GTNN\) của B là \(-2017\) khi \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
vậy \(GTNN\) của B là \(-2017\) khi \(x=3\)
c) ta có : \(\left(x+1\right)^2\ge0\) với mọi x \(\Rightarrow\left(x+1\right)^2+2\ge2\) với mọi x
ta có : \(C=\dfrac{4}{\left(x+1\right)^2+2}\) lớn nhất \(\Leftrightarrow\left(x+1\right)^2+2\) là số dương bé nhất
ta có : \(\left(x+1\right)^2+2\ge2\) với mọi x \(\Rightarrow\) GTNN của \(\left(x+1\right)^2+2\) là 2 khi \(\left(x+1\right)^2=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
khi đó \(C=\dfrac{4}{\left(-1+1\right)^2+2}=\dfrac{4}{2}=2\)
vậy GTLN của C là 2 khi \(x=-1\)
d) ta có : \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}\ge0\forall x;y\\\left|y+1\right|\ge0\forall y\end{matrix}\right.\)
\(\Rightarrow D=\left(2x-y+1\right)^{2018}+\left|y+1\right|+2017\ge2017\) với mọi x ; y
\(\Rightarrow GTNN\) của D là 2017 khi \(\left\{{}\begin{matrix}\left(2x-y+1\right)^{2018}=0\\\left|y+1\right|=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-y+1=0\\y+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x-\left(-1\right)+1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x+1+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\2x=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=-1\end{matrix}\right.\)
vậy GTNN của D là 2017 khi \(x=y=-1\)
Bài 1:
\(A=\left|x-2\right|+\left|x+y-5\right|+3\)
Ta thấy: \(\left\{{}\begin{matrix}\left|x-2\right|\ge0\\\left|x+y-5\right|\ge0\end{matrix}\right.\)\(\forall x,y\)
\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|\ge0\forall x,y\)
\(\Rightarrow\left|x-2\right|+\left|x+y-5\right|+3\ge3\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x-2\right|=0\\\left|x+y-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x-2=0\\x+y-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Bài 2:
\(B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\)
Ta thấy: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\\\left|y+7\right|\ge0\end{matrix}\right.\)\(\forall x,y\)
\(\Rightarrow\left|x+3\right|+\left|y+7\right|\ge0\forall x,y\)
\(\Rightarrow\left|x+3\right|+\left|y+7\right|+2\ge2\forall x,y\)
\(\Rightarrow\dfrac{1}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{1}{2}\forall x,y\)
\(\Rightarrow B=\dfrac{10}{\left|x+3\right|+\left|y+7\right|+2}\le\dfrac{10}{2}=5\forall x,y\)
Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}\left|x+3\right|=0\\\left|y+7\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x+3=0\\y+7=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)
1/ Vì: \(\left|x-2\right|\ge0\forall x\Rightarrow Min_{\left|x-2\right|}=0\Leftrightarrow x=2\)(1)
Lại có: \(\left|x+y-5\right|\ge0\forall x,y\)
hay \(\left|2+y-5\right|\ge0\forall x,y\)
\(\Rightarrow Min_{\left|2+y-5\right|}=0\Leftrightarrow y=3\) (2)
Từ (1), (2)
\(\Rightarrow MIN_A=3\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
2/ Để \(\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}\) lớn nhất
\(\Rightarrow2+\left|x+3\right|+\left|y+7\right|\) nhỏ nhất
Ta có: \(\left\{{}\begin{matrix}\left|x+3\right|\ge0\forall x\\\left|y+7\right|\ge0\forall y\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}Min_{\left|x+3\right|}=0\Leftrightarrow x=-3\\Min_{\left|y+7\right|}=0\Leftrightarrow y=-7\end{matrix}\right.\)
\(\Rightarrow Min_{2+\left|x+3\right|+\left|y+7\right|}=2\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)
\(\Rightarrow MAX_{\dfrac{10}{2+\left|x+3\right|+\left|y+7\right|}}=\dfrac{10}{2}=5\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-7\end{matrix}\right.\)
a, A = 3,5 + |x - 2017| - 9
= -5,5 + |x - 2017|
Ta có : |x - 2017| \(\ge0\Rightarrow-5,5+\left|x-2017\right|\ge-5,5\)
Dấu ''='' xảy ra <=> x - 2017 = 0 <=> x = 2017
Vậy GTNN của A = -5,5 <=> x = 2017
@Cô Bé Dễ Thương
P nhỏ nhất khi x2+3x+10 lớn nhất
Ta có: \(x^2+3x+10=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)không có GTLN
=> P không có GTNN
P lớn nhất khi x2+3x+10 nhỏ nhất
<=> \(\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\text{ nhỏ nhất}\left(=\frac{31}{4}\right)\)
<=> x + 3/2 = 0
<=> x = -3/2
=> GTLN của P là -20/31 <=> x=-3/2
\(M=x^2+8x+y^2+2y-10\)
\(=x^2+2.x.4+16+y^2+2.y.1+1-27\)
\(=\left(x+4\right)^2+\left(y+1\right)^2-27\ge-27\)
=> GTNN của M là -27
<=> x+4=0 và y+1=0
<=> x=-4 và y=-1.