Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^2-6x+11\)
\(=\left(x^2-6x+9\right)+2\)
\(=\left(x-3\right)^2+2\)
Ta có :
\(\left(x-3\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-3\right)^2+2\ge2\) với mọi x
Dấu = xảy ra \(\Leftrightarrow\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(Min_A=2\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x+\dfrac{25}{4}\right)-\dfrac{25}{2}-1\)
\(=2\left(x+\dfrac{5}{2}\right)^2-\dfrac{27}{2}\)
Lập luận tương tự câu a
c, \(C=5x-x^2\)
\(=-\left(x^2-5x+\dfrac{25}{2}\right)+\dfrac{25}{2}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{2}\)
Lập luận tương tự câu a
a, \(A=x^2-6x+11\)
\(=x^2-2.3.x+9+2\)
\(=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\Leftrightarrow\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\)\(\Leftrightarrow x=3\)
Vậy \(MinA=3\Leftrightarrow x=3\)
b, \(B=2x^2+10x-1\)
\(=2\left(x^2+5x\right)-1\)
\(=2\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)-\frac{21}{4}\)
\(=2\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\)
Ta có: \(\left(x+\frac{5}{2}\right)^2\ge0\Leftrightarrow\left(x+\frac{5}{2}\right)^2-\frac{21}{4}\ge-\frac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MinB=-\frac{21}{4}\Leftrightarrow x=-\frac{5}{2}\)
c, \(C=5x-x^2\)
\(=-x^2+5x\)
\(=-\left(x^2+2.\frac{5}{2}x+\frac{25}{4}\right)+\frac{25}{4}\)
\(=-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\)
Ta có: \(-\left(x+\frac{5}{2}\right)^2\le0\Leftrightarrow-\left(x+\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(MaxB=\frac{25}{4}\Leftrightarrow x=-\frac{5}{2}\)
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
A = -(x2+6x-11)
=-(x2+6x+9-20)
=-(x+3)2 + 20 \(\le20\)
vậy min A = 20
dấu = xảy ra khi x = -3
câu B bạn xem có nhầm đề hay thiếu gì k thì bổ sung nhé
\(A=2x^2+10x-1=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge-\frac{27}{2}\)
=> Min A \(=-\frac{27}{2}\Leftrightarrow x=-\frac{5}{2}\)
\(B=5x^2-x=5\left(x-\frac{1}{10}\right)^2-\frac{1}{20}\ge-\frac{1}{20}\)
=> Min B \(=-\frac{1}{20}\Leftrightarrow x=\frac{1}{10}\)
D= 2( \(x^2\)+5x-\(\dfrac{1}{2}\))
D= 2( \(x^2\)+ 2. \(\dfrac{5}{2}\)x + \(\dfrac{25}{4}\)-\(\dfrac{27}{4}\))
D= 2( x+\(\dfrac{5}{2}\))\(^2\)+ \(\dfrac{27}{8}\) lớn hơn hoặc bằng \(\dfrac{27}{8}\)
vậy min P = \(\dfrac{27}{8}\) <=> x = -\(\dfrac{5}{2}\)
e)\(E=5x-x^2=-x^2+5x=-x^2+2\cdot x\cdot\dfrac{5}{2}-\dfrac{25}{4}+\dfrac{25}{4}=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
(Vì: \(\left(x-\dfrac{5}{2}\right)^2\ge0\Rightarrow-\left(x-\dfrac{5}{2}\right)^2\le0\))
Vậy \(MaxE=\dfrac{25}{4}\) khi \(x=\dfrac{5}{2}\)
a) Ta có: \(x\left(3-x\right)+1=3x-x^2+1\)
\(=-x^2+3x+1=-\left(x^2-3x-1\right)\)
\(=-\left(x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}-\frac{9}{4}-1\right)\)
\(=-\left[\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\right]=-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\)
Ta có: \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-\frac{3}{2}\right)^2+\frac{13}{4}\le\frac{13}{4}\forall x\)
Dấu '=' xảy ra khi
\(\left(x-\frac{3}{2}\right)^2=0\Leftrightarrow x-\frac{3}{2}=0\Leftrightarrow x=\frac{3}{2}\)
Vậy: Giá trị lớn nhất của biểu thức \(x\left(3-x\right)+1\) là \(\frac{13}{4}\) khi \(x=\frac{3}{2}\)
b) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2=\left(x-3\right)^2+2\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+2\ge2\forall x\)
\(\Rightarrow\frac{-1}{\left(x-3\right)^2+2}\ge\frac{-1}{2}\forall x\)
hay \(A=\frac{-1}{x^2-6x+11}\ge-\frac{1}{2}\forall x\)
Dấu '=' xảy ra khi \(\left(x-3\right)^2+2=2\)
hay \(\left(x-3\right)^2=0\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=\frac{-1}{x^2-6x+11}\) là \(-\frac{1}{2}\) khi x=3
a, Ta có : \(x\left(3-x\right)+1\)
= \(3x-x^2+1\)
= \(-\left(x^2-3x-1\right)\)
= \(-\left(x^2-2.x.\frac{3}{2}+2,25-3,25\right)\)
= \(-\left(\left(x-1,5\right)^2-3,25\right)\)
= \(3,25-\left(x-1,5\right)^2\)
Ta thấy : \(\left(x-1,5\right)^2\ge0\forall x\)
=> \(-\left(x-1,5\right)^2\le0\)
=> \(3,25-\left(x-1,5\right)^2\le3,25\)
- Dấu " = " xảy ra khi \(x-1,5=0\)
=> \(x=1,5\)
Vậy Max = 3,25 khi x = 1,5 .
a) Ta có : \(A=-6x+x^2+11\)
\(\Rightarrow A=\left(x^2-6x+9\right)+2\)
\(\Rightarrow A=\left(x-3\right)^2+2\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow x-3=0\Leftrightarrow x=3\)
Vậy \(minA=2\Leftrightarrow x=3\)
b) \(B=-1+2x^x+10x\)
\(\Rightarrow\)Tớ đang thắc mắc cái chỗ 2xx :)))