K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2019

a) \(A=9x^2-30x+30\)

\(A=\left(3x\right)^2-2\cdot3x\cdot5+5^2+5\)

\(A=\left(3x-5\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{5}{3}\)

17 tháng 3 2019

b) \(B=16x^2-24x-3\)

\(B=\left(4x\right)^2-2\cdot4x\cdot3+3^2-13\)

\(B=\left(4x-3\right)^2-13\ge-13\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)

\(a,2x^2+7x+100=2\left(x+\frac{7}{4}\right)^2+\frac{751}{8}\ge\frac{751}{8}\)

Dấu " =" xảy ra khi 

\(x=\frac{-7}{4}\)

Vậy..............................

\(b,4x^2-25x+9=4\left(x^2-\frac{25}{4}x+\frac{9}{4}\right)\)

\(=4\left(x-\frac{25}{8}\right)^2-\frac{481}{16}\ge\frac{-481}{16}\)

Dấu "=" xảy ra khi  \(x=\frac{25}{8}\)

Vậy............................................

13 tháng 6 2019

A= 2.(x2+2.x.7/4+49/16)2+751/8

= 2.(x+7/4)2+751/8

Lại có (x+7/4)2\(\ge\)0

=> A \(\ge\)751/8

Vậy Min A = 751/8 <=> x= -7/4

b,B= (2x)2-2.2x.25/4+625/16 -481/16

= (2x-25/4)2-481/16 

Lại có (2x-25/4)2\(\ge\)0

=> B \(\ge\)-481/16

Vậy min B = -481/16 <=> x= 25/8

(Máy mình hỏng từ đây mình làm tắt một chút)

c, C= (3x)2-24x+16+40= (3x-4)2+40

Lại có (3x-4)2\(\ge\)0

=> C \(\ge\)40 

Vậy Min C = 40 <=> 3x-4 =0 <=> x= 4/3

d, D= (2x)2+4x+1+10= (2x+1)2+10

Lại có (2x+1)\(\ge\)0

=> D\(\ge\)10

Vậy min D = 10 <=> x= -1/2

e,E= x^2-2x+1+y2 -4y+4+2

= (x-1)2+(y-2)2+2

Lại có (x-1)2+(y-2)2\(\ge\)0

=> E \(\ge\)2

Vậy Min E = 2 <=> x= 1; y=2

13 tháng 6 2019

A= 9- 2.(x^2-2x+ 1)= 9- 2.(x-1)2

Lại có (x-1)2 \(\ge\)0 => A\(\le\)

Vậy max A =9 <=> x-1=0 => x=1

b, B= 139/3-((x.√3)2+2.√3.2/(√3)+4/3)

= 139/3-(√3.x+2/√3)2

Lại có (√3.x+2/√3)2\(\ge\)0 => B\(\le\)139/3

Vậy maxB = 139/3 <=> x = -2/3

c,C= 25-2(x^2-2.x.3+9)= 25- 2(x-3)2

Laạạiại ccó (x-3)2\(\ge\)0

=> C\(\le\)25

Để max C = 25 <=> x-3= 0 <=> x=3

d, D=2163-( x^2-2.x.12+144)= 2163-(x-12)2

Lại có (x-12)2\(\ge\)

=> D\(\le\)2163

Để max D = 2163 <=> x-12 = 0 <=> x= 12

13 tháng 6 2019

hình như bạn nhầm đề à

13 tháng 2 2017

đặt x^2-7x=y=> \(y\ge-\frac{49}{4}\) (*)

\(A=y\left(y+12\right)=y^2+12y=\left(y+6\right)^2-36\ge-36\)

đẳng thức khi y=-6 thủa mãn đk (*)

Vậy: GTNN của A=-36 khí y=-6 =>\(\left[\begin{matrix}x=1\\x=6\end{matrix}\right.\)

16 tháng 12 2018

\(\left(2x+1\right)^2-\left(4x-3\right).\left(x+7\right)-22\)

\(=4x^2+4x+1-4x^2-28x+3x+21-22\)

\(=-21x\)

mấy câu khác tương tự

\(A=x^2+2x+3\)

=\(\left(x+1\right)^2+2\)

Với mọi x thì \(\left(x+1\right)^2>=0\)

=>\(\left(x+1\right)^2+2\)>=2

Để A=2 thì

\(\left(x+1\right)^2=0\)

=>\(x+1=0\)

=>\(x=-1\)

Vậy...

Các câu sau tương tự

9 tháng 9 2017

bạn giúp mik câu B vs C luôn nha

Mik tick cho

Xin bạn đó

22 tháng 7 2017

a, \(x^2+10x+25=x^2+5x+5x+25\)

\(=\left(x+5\right)^2\)

b, \(x^2-12x+36=x^2-6x-6x+36\)

\(=\left(x-6\right)^2\)

c, \(9x^2+4+12x=9x^2+6x+6x+4\)

\(=3x\left(3x+2\right)+2\left(3x+2\right)=\left(3x+2\right)^2\)

d, \(x^2+49-14x=x^2-7x-7x+49\)

\(=\left(x-7\right)^2\)

e, \(9x^4+24x^2+16=9x^4+12x^2+12x^2+16\)

\(=3x^2\left(3x^2+4\right)+4\left(3x^2+4\right)=\left(3x^2+4\right)^2\)

g,\(4x^2-12xy+9y^2=4x^2-6xy-6xy+9y^2\)

\(=2x\left(2x-3y\right)-3y\left(2x-3y\right)=\left(2x-3y\right)^2\)

Chúc bạn học tốt!!!

30 tháng 7 2017

a)\(2x^2-4x+7=2x^2-4x+2+5=2\left(x^2-2x+1\right)+5=2\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra khi x=1

b)\(9x^2-6x+5=\left(3x\right)^2-2.3x.1+1+4=\left(3x-1\right)^2+4\ge5\)

Dấu "=" xảy ra khi x=1/3

c)\(3x^2-5x+2=3\left(x^2-\frac{5}{3}x+\frac{2}{3}\right)=3\left(x^2-2.\frac{5}{6}.x+\frac{25}{36}-\frac{1}{36}\right)\)

\(=3\left[\left(x-\frac{5}{6}\right)^2-\frac{1}{36}\right]=3\left(x-\frac{5}{6}\right)^2-\frac{1}{12}\ge-\frac{1}{12}\)

Dấu "=" xảy ra khi x=5/6

mấy câu sau tương tự

30 tháng 7 2017

a) 2x2-4x+7=(2x2-2.2x.1+1)+6=(2x-1)2+6

Vì (2x-1)2 >_(lớn hơn hoặc bằng) 0

=>(2x-1)2+6>_6

=> GTNN của 2x2-4x+7=6

b, 9x2-6x+5=[(3x)2-2.3x.1+1]+4=(3x-1)2+4

Vì (3x-1)2>_0

=>(3x-1)2+4>_4

=> GTNN của 9x2-6x+5=4