Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = x2y2+2x2+24xy+16x+191 = [ (xy)^2 + 24xy + 144] + \(\left[\left(\sqrt{2}x\right)^2+2.\sqrt{2}x.4\sqrt{2}+32\right]\)+15
= (xy+12)^2 +(\(\sqrt{2}x\)+\(4\sqrt{2}\))^2 + 15
( ở đây mik làm tắt) => Min B = 15 khi \(\sqrt{2}x+4\sqrt{2}=0=>x=-4\)và xy+12 = 0 => -4y = -12= > y=3
A= 2x^2+9y^2-6xy-6x-12y+2004
A = (x^2 -6xy +9y^2) + 4(x -3y) + x^2 - 10x + 2004
A = [(x -3y)^2 +4(x -3y) + 4] + (x^2 -10x +25) + 1975
A= (x -3y +2)^2 + (x -5)^2 + 1975
( mik rút mấy cái bước (x-3y+2)^2 = 0, bn làm thì nên thêm vào=> Min A = 1975 vs x= 5 và y = 7/3
D=-x^2+2xy-4y^2+2x+10y-8
D = (-x^2 - y^2 - 1 + 2xy + 2x - 2y) + (-3y^2 + 12y - 12) + 5
D = -(x^2+y^2+1 - 2xy - 2x + 2y) - 3(y^2 - 4y + 4) + 5
D= - (x - y - 1)^2 - 3(y - 2)^2 +5
=> Max D = 5 khi x= 3 và y=2
x^2 -4x+5+y^2+2y
=(x^2-4x+4)+(y^2+2y +1)
=(x-2)^2+(y+1)^2
vì (x-2 )^2 >= 0
(y+1)^2>=0
=)) (x-2)^2 +(y+1)^2 >=0
dấu "=" xảy ra
<=>x-2 =0 =)x=2
và y+1=0 =)y=-1
vậy..........
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
Ta có: A = 2x2 + 4x + 5 = 2(x2 + 2x + 1) + 3 = 2(x + 1)2 + 3 \(\ge\)3 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MinA = 3 <=> x = -1
\(2x^2+4x+5\)
\(=2\left(x^2+2x+\frac{5}{2}\right)\)
\(=2\left(x^2+2x+1+\frac{3}{2}\right)\)
\(=2\left[\left(x+1\right)^2+\frac{3}{2}\right]\)
\(=2\left(x+1\right)^2+3\ge3\)
Dấu '' = '' xảy ra khi
\(\Leftrightarrow2\left(x+1\right)^2=0\)
\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)
Vậy............................
P/s : sai thì thôi nha
a) \(A=x^2+y^2-x+6y+10=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
\(A=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x;y\)
Vậy GTNN của A = 3/4 khi x=1/2 và y=-3.
b) \(B=2x-2x^2-5=-2\left(x^2-x+\frac{1}{4}\right)-\frac{9}{2}=-2\left(x-\frac{1}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\forall x\)
Vậy GTLN của B = -9/2 khi x=1/2.
A = -x2 + 2xy - 4y2 + 2x + 10y - 8
=> -A = x2 - 2xy + 4y2 - 2x - 10y + 8
= ( x2 - 2xy + y2 - 2x + 2y + 1 ) + ( 3y2 - 12y + 12 ) - 5
= [ ( x2 - 2xy + y2 ) - ( 2x - 2y ) + 1 ] + 3( y2 - 4y + 4 ) - 5
= [ ( x - y )2 - 2( x - y ) + 1 ] + 3( y - 2 )2 - 5
= ( x - y - 1 )2 + 3( y - 2 )2 - 5 ≥ -5 ∀ x, y
Dấu "=" xảy ra <=> x = 3 ; y = 2
=> -A ≥ -5
=> A ≤ 5
=> MaxA = 5 <=> x = 3 ; y = 2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
= ( x2 - 6xy + 9y2 + 4x - 12y + 4 ) + ( x2 - 10x + 25 ) + 1975
= [ ( x2 - 6xy + 9y2 ) + ( 4x - 12y ) + 4 ] + ( x - 5 )2 + 1975
= [ ( x - 3y )2 + 2( x - 3y ).2 + 22 ] + ( x - 5 )2 + 1975
= ( x - 3y + 2 )2 + ( x - 5 )2 + 1975 ≥ 1975 ∀ x, y
Dấu "=" xảy ra <=> x = 5 ; y = 7/3
=> MinB = 1975 <=> x = 5 ; y = 7/3
Ta có: A = -x2 + 2xy - 4y2 + 2x + 10y - 8
A = -[x2 - 2xy + 4y2 - 2x - 10y + 8]
A = -[(x2 - 2xy + y2) - 2(x + y) + 1 + 3y2 - 12y + 12 - 5]
A = -[(x - y)2 - 2(x + y) + 1 + 3(y - 2)2]+ 5
A = -[(x - y - 1)2 + 3(y - 2)2] + 5 \(\le\) 5 với mọi x
Dấu "=" xảy ra <=> x - y - 1 = 0 và y + 2 = 0
=>x = -1 và y = -2
Vậy MaxA = 5 khi x = -1 và y = -2
B = 2x2 + 9y2 - 6xy - 6x - 12y + 2004
B = (x2 - 6xy + 9y2) + 4(x - 3y) + 4 + x2 - 10x + 25 + 1975
B = (x - 3y + 2)2 + (x - 5)2 + 1975 \(\ge\)1975
đoạn cuối tt trên
\(D=\frac{x^2+2}{x^2+1}=\frac{x^2+1+1}{x^2+1}=\frac{x^2+1}{x^2+1}+\frac{1}{x^2+1}=1+\frac{1}{x^2+1}\)
D đạt giá trị lớn nhất
<=> \(\frac{1}{x^2+1}\) đạt giá trị lớn nhất
<=> x2 + 1 đạt giá trị nhỏ nhất
x2 lớn hơn hoặc bằng 0
x2 + 1 lớn hơn hoặc bằng 1
\(\frac{1}{x^2+1}\le1\)
\(1+\frac{1}{x^2+1}\le2\)
Vậy Max D = 2 khi x = 0
Ta có: A = x2 + 2y2 + 9z2 - 2x + 12y + 6z + 24
A = (x2 - 2x + 1) + 2(y2 + 6y + 9) + (9z2 + 6z + 1) + 4
A = (x - 1)2 + 2(y + 3)2 + (3z + 1)2 + 4 \(\ge\)4 \(\forall\)x;y;z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\\3z+1=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\\z=-\frac{1}{3}\end{cases}}\)
Vậy MinA = 4 <=> x= 1 ; y = -3 và z = -1/3
\(x^2+2y^2+9z^2-2x+12y+6z+24\)
\(=\left(x^2-2x+1\right)+\left(9z^2+6z+1\right)+\left(2y^2+12y+22\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+11\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y^2+6y+9+2\right)\)
\(=\left(x-1\right)^2+\left(3z+1\right)^2+2\left(y+3\right)^2+4\ge4\)
Dấu '' = '' xảy ra khi \(\Leftrightarrow\hept{\begin{cases}x-1=0\\3z+1=0\\y+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\z=-\frac{1}{3}\\y=-3\end{cases}}}\)
Vậy................................