Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ Câu hỏi của Jey - Toán lớp 7 - Học toán với OnlineMath
2/ \(\left(a-b\right)^2+6ab=36\Rightarrow6ab=36-\left(a-b\right)^2\le36\Rightarrow ab\le\frac{36}{6}=6\)
Dấu "=" xảy ra khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
Vậy abmax = 6 khi \(\orbr{\begin{cases}a=b=\sqrt{6}\\a=b=-\sqrt{6}\end{cases}}\)
3/
a, Để A đạt gtln <=> 17/13-x đạt gtln <=> 13-x đạt gtnn và 13-x > 0
=> 13-x = 1 => x = 12
Khi đó \(A=\frac{17}{13-12}=17\)
Vậy Amax = 17 khi x = 12
b, \(B=\frac{32-2x}{11-x}=\frac{22-2x+10}{11-x}=\frac{2\left(11-x\right)+10}{11-x}=2+\frac{10}{11-x}\)
Để B đạt gtln <=> \(\frac{10}{11-x}\) đạt gtln <=> 11-x đạt gtnn và 11-x > 0
=>11-x=1 => x=10
Khi đó \(B=\frac{10}{11-10}=10\)
Vậy Bmax = 10 khi x=10
2x=3y=4z =k
suy ra x=k/2; y=k/3, z=k/4
mà xy + yz + zx = 6
suy ra \(\frac{k^2}{6}+\frac{k^2}{12}+\frac{k^2}{8}=6\Rightarrow k^2.\frac{3}{8}=6\Rightarrow k^2=16\Rightarrow k\in\left\{4;-4\right\}\)
Với k = 4 suy ra x =2; y=4/3; z=1
Với k =- 4 suy ra x =-2; y=-4/3; z=-1
Ta có :
\(2x=3y\Leftrightarrow\frac{x}{3}=\frac{y}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{4}\)
\(3y=4z\Leftrightarrow\frac{z}{3}=\frac{y}{4}\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Ta có :
\(\left(\frac{x}{6}\right)^2=\frac{x}{6}.\frac{x}{6}=\frac{x}{6}.\frac{y}{4}=\frac{y}{4}.\frac{z}{3}=\frac{z}{3}.\frac{y}{6}\)
\(\Leftrightarrow\)\(\left(\frac{x}{6}\right)^2\)\(=\frac{xy}{24}=\frac{yz}{12}=\frac{zx}{18}=\frac{xy+yz+zx}{24+12+18}=\frac{1}{9}\)\(\left(\text{T/c dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)\(=\pm\frac{1}{3}\)
Ta có: \(\left|2x+3y\right|\ge0\)\(\forall x,y\inℝ\); \(\left|4y+5z\right|\ge0\)\(\forall y,z\inℝ\); \(\left|xy+yz+zx+110\right|\ge0\)\(\forall x,y,z\inℝ\)
Nên: \(P=\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|\ge0\)\(\forall x,y,z\inℝ\)
Dấu " = " xảy ra <=> \(\left|2x+3y\right|+\left|4y+5z\right|+\left|xy+yz+xz+110\right|=0\)
Có: \( \left|2x+3y\right|=0\)\(\Leftrightarrow2x+3y=0\)\(\Leftrightarrow2x=-3y\)\(\Leftrightarrow\frac{x}{-3}=\frac{y}{2}\)
\(\left|4y+5z\right|=0\)\(\Leftrightarrow4y+5z=0\)\(\Leftrightarrow4y=-5z\)\(\Leftrightarrow\frac{y}{-5}=\frac{z}{4}\)
\(\left|xy+yz+zx+110\right|=0\)\(\Leftrightarrow xy+yz+zx+110=0\)\(\Leftrightarrow xy+yz+zx=-110\)
Lại có: \(\frac{x}{-3}=\frac{y}{2}\)\(\Rightarrow\frac{x}{15}=\frac{y}{-10}\) (1) ; \(\frac{y}{-5}=\frac{z}{4}\)\(\Rightarrow\frac{y}{-10}=\frac{z}{8}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{15}=\frac{y}{-10}=\frac{z}{8}=k\)=> x = 15k ; y = (-10) . k ; z = 8k
Ta có: \(xy+yz+zx=-110\)\(\Rightarrow15k\left(-10\right)k+8k\left(-10\right)k+8k.15k=-110\)
\(\Rightarrow k^2\left(-150\right)+k^2\left(-80\right)+120k^2=-110\)
\(\Rightarrow k^2\left(-110\right)=-110\)\(\Rightarrow k^2=1\)\(\Rightarrow\orbr{\begin{cases}k=1\\k=-1\end{cases}}\)
+) Th1: k = 1
Có: x = 15k = 15 . 1 = 15
y = (-10) . k = (-10) . 1 = -10
z = 8k = 8 . 1 = 8
+) Th2: k = -1
Có: x = 15k = 15 . (-1) = -15
y = (-10) . k = (-10) . (-1) = 10
z = 8k = 8 . (-1) = -8
Vậy GTNN P = 0 <=> (x; y; z) = (15; -10; 8) hoặc (x; y; z) = (-15; 10; -8)
Ta có \(\left|7x-5y\right|\ge0\) với \(\forall x;y\)
\(\left|2z-3x\right|\ge0\)với \(\forall x;z\)
\(\left|xy+yz+zx-2000\right|\ge0\)với \(\forall x;y;z\)
=>\(\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\ge0\) với \(\forall x;y;z\)
Mà A=0 \(\Leftrightarrow\left|7x-5y\right|=\left|2z-3x\right|=\left|xy+yz+zx-2000\right|=0\)
Lại có: \(\left|7x-5y\right|=0\Rightarrow7x-5y=0\Rightarrow7x=5y\Rightarrow\frac{x}{5}=\frac{y}{7}\)
Tương tự, ta cx có: \(\left|2z-3x\right|=\frac{x}{2}=\frac{z}{3}\)
Và \(\left|xy+yz+zx-2000\right|=0\Rightarrow xy+yz+zx-2000=0\Rightarrow xy+yz+zx=2000\)
Từ đó ta tìm đc: \(\orbr{\begin{cases}x=20;y=28;z=30\\x=-20;y=-28;z=-30\end{cases}}\)
\(A\ge0\)mà A=0 <=>(x;y;z)\(\in\left\{\left(20;28;30\right),\left(-20;-28;-30\right)\right\}\)
Vậy GTNN của A=0 <=> (x;y;z)\(\in\left\{\left(20;28;30\right)\left(-20;-28;-30\right)\right\}\)
Hôm thứ 6 tuần trc cô giáo t vừa cho cái đề này để ôn thi, hình như cô in trên mạng hay sao ý ạ, cô giảng cho mình như nà, mik làm tắt( có gì ko hiểu ib nha), cồn nếu ko thì lên mạng tìm nha~
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21