K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2017

a)

\(A=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)

Vậy \(MinA=1\Leftrightarrow \left(x-2\right)^2=0\Leftrightarrow x=2\)

\(B=x^2-x=\left(x^2-x+\frac{1}{4}\right)-\frac{1}{4}=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)

Vậy \(MinB=-\frac{1}{4}\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Leftrightarrow x=\frac{1}{2}\)

\(C=-\left(x+1\right)^2+3\le3\)

Vậy \(MaxC=3\Leftrightarrow-\left(x+1\right)^2=0\Leftrightarrow x=-1\)

9 tháng 7 2017

a, A= (x-2)^2 +1 >= 1

Dấu "=" xảy ra <=> x-2=0 <=>x=2

Vậy Min A= 1<=> x=2

b, B= (x-1/2)^2 - 1/4>=-1/4

Dấu "=" xảy ra <=> x-1/2 = 0<=> x= 1/2

Vậy Min B= -1/4 <=> x= 1/2

c, C = 3-(x+1)^2 <=3

Dấu "=" xảy ra <=> x+1 = 0 <=> x=-1

Vậy Max C = 3 <=> x= -1

18 tháng 10 2016

đơn giản wá 

8 tháng 7 2019

a) \(A=x^2-3x-x+3+11\) 

      \(=\left(x^2-4x+4\right)+10\)

      \(=\left(x-2\right)^2+10\ge10\forall x\in R\) 

Dấu "=" xảy ra<=> \(\left(x-2\right)^2=0\Leftrightarrow x=2\) 

b) \(B=5-4x^2+4x\) 

      \(=-\left(4x^2-4x+1\right)+6\) 

      \(=-\left(2x-1\right)^2+6\le6\forall x\in R\)

Dấu "=" xảy ra<=> \(-\left(2x-1\right)^2=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)

c) \(C=\left(x^2-3x+1\right)\left(x^2-3x-1\right)\)

       \(=\left(x^2-3x\right)^2-1\ge-1\forall x\in R\)

Dấu "=" xảy ra<=>\(\left(x^2-3x\right)^2=0\Leftrightarrow x\left(x-3\right)=0\Leftrightarrow x=0;x=3\) 

18 tháng 12 2016

\(A=x^2-4x^2+2-1=\left(x-2\right)^2-1\)

suy ra Amin=-1

18 tháng 12 2016

\(B=4x^2+4x+11=4\left(x^2+x+\frac{11}{4}\right)=4\left(x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{10}{4}\right)=4\left(x+\frac{1}{2}\right)^2+10\) Suy ra Bmin = 10

6 tháng 7 2017

Ta có : x2 - 2x + 5

= x2 - 2x + 1 + 4

= (x - 1)2 + 4

Mà (x - 1)2 \(\ge0\forall x\)

Nên (x - 1)2 + 4 \(\ge4\forall x\)

Vậy GTNN của biểu thức là : 4 khi và chỉ khi x = 1

2 tháng 10 2019

\(P=x^2-2x+5\)

\(P=x^2-2x+1+4\)

\(P=\left(x-1\right)^2+4\ge4\)

=> GTNN của P = 4 

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x=1\)

Vậy................

6 tháng 7 2017

1) a)

 \(P=x^2-2x+5\)

\(=x^2-2x+4+1\)

\(=\left(x+2\right)^2+1\ge1\)

vậy min O =1 khi x= -2

6 tháng 7 2017

1) 

c) K = 4x - x2 - 5 

= -x2 + 4x - 4 - 1

= - (x2 - 4x + 4) - 1

= - (x - 2)2 - 1

Vì (x - 2)2 \(\ge0\forall x\)

=>  - (x - 2)\(\le0\forall x\)

=> -(x - 2)2 \(\le-1\forall x\)

Vậy GTLN của biểu thức là - 1 khi và chi x = 2

19 tháng 7 2017

Ta có : x2 + 4x 

= x2 + 4x + 4 - 4

= (x + 2)2 - 4 

Mà ; (x + 2)\(\ge0\forall x\)

Nên : (x + 2)2 - 4 \(\ge-4\forall x\)

Vậy GTNN của biểu thức là -4 khi x = -2

19 tháng 7 2017

Ta có : 4x2 - 4x - 1

= (2x)2 - 4x + 1 - 1

= (2x - 1)2 - 1

Mà : (2x - 1)2 \(\ge0\forall x\)

Nên : (2x - 1)2 - 1 \(\ge-1\forall x\)

Vậy GTNN của biểu thức là - 1 khi x = \(\frac{1}{2}\)

19 tháng 7 2017

giúp mấy câu tiếp theo với

6 tháng 7 2017

Câu 1:

b, \(Q=x^2+y^2-x+6y+10\)

\(Q=x^2-\dfrac{1}{2}x-\dfrac{1}{2}x+\dfrac{1}{4}+y^2+3y+3y+9+\dfrac{3}{4}\)

\(Q=\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\)

Với mọi giá trị của x;y ta có:

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)

\(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Hay \(Q\ge\dfrac{3}{4}\) với mọi giá trị của x;y

Để \(Q=\dfrac{3}{4}\) thì \(\left(x-\dfrac{1}{2}\right)^2+\left(y+3\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+3=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-3\end{matrix}\right.\)

Vậy..............

Câu a;c tách như câu b,

Câu 2:

\(A=4x-x^2+3=-\left(x^2-4x-3\right)=-\left(x^2-2x-2x+4-7\right)\)

\(=-\left[\left(x-2\right)^2-7\right]\)

Với mọi giá trị của x ta có:

\(\left(x-2\right)^2-7\ge-7\)

\(-\left[\left(x-2\right)^2-7\right]\ge7\)

Hay \(A=7\) với mọi giá trị của x

Để \(A=7\) thì \(-\left[\left(x-2\right)^2-7\right]=7\)

\(\Rightarrow\left(x-2\right)^2=0\Rightarrow x=2\)

Vậy..............

b,c làm tương tự

Chúc bạn học tốt!!!

6 tháng 7 2017

a minh biet r

con b thi ko

5 tháng 7 2017

a) đặt \(A=x^2+x+1\)

\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)

\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)

b) đặt \(B=2+x-x^2\)

\(=-x^2+x+2\)

\(=-\left(x^2-x-2\right)\)

\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)

\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)

Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)

Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)

c) đặt \(C=x^2-4x+1\)

\(=x^2-2\cdot x\cdot2+2^2-4+1\)

\(=\left(x-2\right)^2-3\ge-3\)

Dấu "=" xảy ra khi \(x=2\)

Vậy \(MIN_c=-3\) khi \(x=2\)

d) đặt \(D=4x^2+4x+11\)

\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)

\(=\left(2x+1\right)^2+10\ge10\)

Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)

Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)

mấy câu còn lại tương tự

12 tháng 6 2018

\(A=x^2-6x+3\)

\(=\left(x^2-6x+9\right)-6\)

\(=\left(x+3\right)^2-6\)

ma \(\left(x+3\right)^2\ge0\Leftrightarrow\left(x+3\right)^2-6\ge-6\)

vậy gtnn của A là -6 tại x=-3

\(B=x^2+3x+7=\left(x^2+2.\frac{3}{2}x+\frac{9}{4}\right)+\frac{17}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{17}{4}\ge\frac{17}{4}\)

vay .............................................

2/

\(A=-x^2+4x+8=-\left(x^2-4x+4\right)+12=-\left(x-2\right)^2+12\le12\)

vay .........................................

\(B=-x^2+3x-5=-\left(x^2-2\frac{3}{2}x+\frac{9}{4}\right)-\frac{11}{4}=\left(x-\frac{3}{2}\right)^2-\frac{11}{4}\le-\frac{11}{4}\)

vay.....................................

nếu có sai mong bạn thông cảm

12 tháng 6 2018

ko sao cảm ơn