K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

a, Vì |y| \(\ge\)0

=> A = 10-|y| \(\le10\)

Dấu "=" xảy ra khi y=0

Vậy GTLN của A = 10 khi y=0

b, \(x^2\ge0\)

=> \(B=x^2+2\ge2\)

Dấu "=" xảy ra khi x = 0

VẬy GTNN của B = 2 khi x=0

c, \(\left(x-1\right)^2\ge0\)

=> C = \(\left(x-1\right)^2-5\ge-5\)

Dấu "=" xảy ra khi x=1

Vậy GTNN của C = -5 khi x=1

1 tháng 1 2018

a, A < = 10 - 0 = 10

Dấu "=" xảy ra <=> y=0

b, B >= 0 + 2 = 2

Dấu "=" xảy ra <=> x=0

c, C >= 0 - 5 = -5

Dấu "=" xảy ra <=> x-1=0 <=> x=1

k mk nha

13 tháng 2 2016

a) A = | x - 3 | + 1 

| x - 3 |\(\ge\)0

Nên | x - 3 |+1\(\ge\)1

Dấu = xảy ra khi x-3=0 hay x=3

Vậy GTNN của A=1 khi x=3

b ) B = | 6 - 2x | - 5 

 | 6 - 2x |\(\ge\)0

Nên |6-2x|-5\(\ge\)-5

Dấu = xảy ra khi 6-2x=0 hay x=3

Vậy GTNN của B=-5 khi x=3

c ) C = - ( x + 1 ) 2 - |2y - y | + 11 

Vì ( x + 1 ) 2\(\ge\)0

Nên -( x + 1 ) 2\(\le\)0

Vì  |2y - y |\(\ge\)0

Nên  - |2y - y |\(\le\)0

 C = - ( x + 1 ) 2 - |2y - y | + 11 \(\le\)11

Dấu = xảy ra khi x+1=0 và 2y-y=0 hay x=-1;y=0

Vậy GTLN của C=11 khi x=-1 và y=0

d ) D = ( x + 5 )2 + (2y - 6 )2 + 1

Vì  ( x + 5 )2 \(\ge\)0

      (2y - 6 )2 \(\ge\)0

 D = ( x + 5 )2 + (2y - 6 )2 + 1\(\ge\)1

Vậy dấu = xảy ra khi x+5=0;2y-6=0 hay x=-5;y=3

Vậy GTNN của D=1 khi x=-5;y=3

19 tháng 1 2017

Bài 1:

Ta có: \(-\left|x\right|\le0\)

\(-\left(y-4\right)^4\le0\)

\(\Rightarrow-\left|x\right|-\left(y-4\right)^4\le0\)

\(\Rightarrow A=10-\left|x\right|-\left(y-4\right)^4\le10\)

Vậy \(MAX_A=10\) khi \(x=0;y=4\)

Bài 2:

Ta có: \(\left|2x+6\right|\ge0\)

\(\left(x-y\right)^2\ge0\)

\(\Rightarrow\left|2x+6\right|+\left(x-y\right)^2\ge0\)

\(\Rightarrow B=\left|2x+6\right|+\left(x-y\right)^2-5\ge-5\)

Vậy \(MIN_B=-5\) khi \(x=-3;y=-3\)

19 tháng 1 2017

bạn trả lời rõ hơn chỗ suy ra =>-|x|-(y-4)^4 và => |2x+6|+(x-y)^2 đc ko???

6 tháng 1 2016

dựa vào những điều sau : mọi giá trị tuyệt đối đều lớn hơn hoặc = 0

                                      mọi số mũ 2 đều lớn hơn hoặc = 0

từ những điều đó ta sẽ được đáp án như sau :

Bài 1 :

a) GTNN = -1 

b) GTNN = -2

c) GTNN = -3

Bài 2 :

a) GTLN = 7

b) GTLN = 8

c) GTLN = 10

26 tháng 8 2016

a/ A = x2 + (y - 1)4 - 3

Do x2\(\ge\) 0 và (y - 1)4\(\ge\)0

=> A = x2 + (y - 1)4 - 3 \(\ge\)-3

Đẳng thức xảy ra khi: x = 0 và y - 1 = 0  => x = 0 và y = 1

Vậy GTNN của A là -3 khi x = 0 và y = 1

b/ B = 3(x2 - 7) + 2016 = 3x2 - 21 + 2016 = 3x2 + 1995 

Mà: 3x2\(\ge\)0  => B = 3x2 + 1995 \(\ge\)1995

Đẳng thức xảy ra khi: 3x2 = 0  => x = 0

Vậy GTNN của B là 1995 khi x = 0

c/ C = (2x + 3)(x - 5) - x(x - 7) = 2x2 - 10x + 3x -15 - (x2 - 7x) = 2x2 - 7x -15 - x2 + 7x = (2x2 -x2) + (-7x + 7x) - 15 = x2 -15 

Mà: x2\(\ge\)0  => x2 - 15\(\ge\)-15

Đẳng thức xảy ra khi: x2 = 0  => x = 0

Vậy GTNN cảu C là -15 khi x = 0

7 tháng 7 2017

a) Do: |6 - 2x| \(\ge\)0  nên A = |6 - 2x| - 5 \(\ge\)0 - 5 = -5

Dấu"=" xảy ra khi: |6 - 2x| = 0  => x = 3

Vậy GTNN của A là -5 khi x = 3

b) Ta có: |x + 1|\(\ge\)0 hay - |x + 1|\(\le\)0  nên B = 3 - |x + 1| \(\le\)3 - 0 = 3

Dấu "=" xảy ra khi: |x + 1| = 0   => x = -1

Vậy GTLN của B là 3 khi x = - 1 

7 tháng 7 2017

c) Ta có: (x + 1)2 \(\ge\)0 nên - (x + 1)2 \(\le\)0          (1)

|2 - y|\(\ge\)0 nên -|2 - y| \(\le\)0                               (2)

Từ (1) và (2)  => C = -(x + 1)2 - |2 - y| + 11 \(\le\)11

Dấu "=" xảy ra khi: (x + 1)2 = 0 và |2 - y| = 0    => x = -1 và y = 2

Vậy GTLN của C là 11 khi x = -1 và y = 2

d) Do: (x + 5)2 \(\ge\)0 và (2y - 6)2 \(\ge\)0

Nên: D = (x + 5)2 + (2y - 6)2 + 1 \(\ge\)1

Dấu "=" xảy ra khi: (x + 5)2 = 0 và (2y - 6)2 = 0   => x = -5 và y = 3

Vậy GTNN của D là 1 khi x = -5 và y = 3

5 tháng 8 2020

a. Vì \(\left|x-1\right|\ge0\forall x;\left(y+2\right)^2\ge0\forall y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2\ge0\forall x;y\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^2+2020\ge2020\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x-1=0\\y+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\y=-2\end{cases}}}\)

Vậy Bmin = 2020 <=> x = 1 và y = - 2

b. Vì \(x^2\ge0\forall x\Rightarrow-x^2\le0\)

\(\Rightarrow-x^2+2019\le2019\)

Dấu "=" xảy ra \(\Leftrightarrow-x^2=0\Leftrightarrow x=0\)

Vậy Pmax = 2019 <=> x = 0

Vì \(\left|y-1\right|\ge0\forall y;\left(t+2\right)^4\ge0\forall t\)

\(\Rightarrow-\left|y-1\right|-\left|t+2\right|^4\le0\forall y;t\)

\(\Rightarrow-\left|y-1\right|-\left|t-2\right|^4+21\le21\)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}\left|y-1\right|=0\\\left|t+2\right|^4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}y-1=0\\t+2=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}y=1\\t=-2\end{cases}}\)

Vậy Qmax <=> y = 1 và t = 2

6 tháng 8 2020

Cảm ơn bạn Death Note nha

21 tháng 7 2019

Làm mẫu 1 phần ko hiểu thì bảo mình làm típ

a) Ta có: \(\left(x+3\right)^2\ge0;\forall x\)

\(\left(x+3\right)^2-2\ge0-2;\forall x\)

Hay \(A\ge-2;\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+3\right)^2=0\)

                         \(\Leftrightarrow x=-3\)

VẬY MIN A=-2 \(\Leftrightarrow x=-3\)

7 tháng 8 2018

2 . Tìm GTLN : 

b . \(B=-\left|2019-x\right|+2018\)

\(\Rightarrow B=2018-\left|2019-x\right|\)

Vì \(\left|2019-x\right|\ge0\forall x\)

\(\Rightarrow B=2018-\left|2019-x\right|\le2018\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2019-x\right|=0\)

                          \(\Leftrightarrow2019-x=0\)

                           \(\Leftrightarrow x=2019-0\)

                             \(\Leftrightarrow x=2019\)

Vậy  \(B_{max}=2018\Leftrightarrow x=2019\)

25 tháng 1 2017

Bài 1:

A = 32 + 33 + 34 + ... + 32018

3A = 33 + 34 + 35 + ... + 32019

3A - A = (33 + 34 + 35 + ... + 32019) - (32 + 33 + 34 + ... + 32018)

2A = 32019 - 9

A = (32019 - 9) : 2

= (32016.33 - 9) : 2

= [ (34)504.27 - 9] : 2

= [ (...1)504.27 - 9] : 2

= [ (...1).27 - 9] : 2

= [ (...7) - 9] : 2

= (....8) : 2

= ...4

Vậy c/s tận cùng của A là 4

Bài 2:

Ta có:

1019 + 1018 + 1017

= 1016.103 + 1016.102 + 1016.10

= 1016.(103 + 102 + 10)

= 1016.1110

= 1016.2.555

Vì 555 chia hết cho 555 nên 1016.2.555 chia hết cho 555

Vậy 1019 + 1018 + 1017 chia hết cho 555 (đpcm)

Bài 3:

x + 6 chia hết cho x + 2

=> x + 2 + 4 chia hết cho x + 2

=> 4 chia hết cho x + 2

=> x + 2 thuộc Ư(4) = {\(\pm1;\pm2;\pm4\)}

x + 2 1 -1 2 -2 4 -4
x -1 -3 0 -4 2 -6

Vậy x = {-1;-3;0;-4;2;-6}

Bài 4:

Giả sử x + 4y chia hết cho 7 (1)

Vì 3x + 5y chia hết cho 7 nên 2(3x + 5y) chia hết cho 7

=> 6x + 10y chia hết cho 7 (2)

Từ (1) và (2) => (x + 4y) + (6x + 10y) chia hết cho 7

=> x + 4y + 6x + 10y chia hết cho 7

=> (x + 6x) + (4y + 10y) chia hết cho 7

=> 7x + 14y chia hết cho 7

=> 7(x + 2y) chia hết cho 7

=> Giả sử đúng

Vậy x + 4y chia hết cho 7 (đpcm)

Bài 5:

1, Ta có: \(-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow-1-\left(x+2\right)^{2018}\le0\)

\(\Rightarrow A\le0\)

Dấu " = " xảy ra <=> (x + 2)2018 = 0 <=> x = -2

Vậy GTNN của A là -1 khi x = -2

2, Ta có: \(x^2\ge0\)

\(\left|2y-18\right|\ge0\)

\(\Rightarrow x^2+\left|2y-18\right|\ge0\)

\(\Rightarrow-9+x^2+\left|2y-18\right|\ge-9\)

Dấu " = " xảy ra <=> \(\left\{\begin{matrix}x^2=0\\\left|2y-18\right|=0\end{matrix}\right.\Leftrightarrow\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Vậy GTLN của B là -9 khi \(\left\{\begin{matrix}x=0\\y=9\end{matrix}\right.\)

Bài 6:

1, xy + 2x - y - 2 = 5

<=> x(y + 2) - (y + 2) = 5

<=> (x - 1)(y + 2) = 5

=> x - 1 và y + 2 thuộc Ư(5) = {\(\pm1;\pm5\)}

Ta có bảng:

x - 1 1 -1 5 -5
y + 2 5 -5 1 -1
x 2 0 6 -4
y 3 -7 -1 -3

Vậy các cặp (x;y) là (2;3) ; (0;-7) ; (6;-1) ; (-4;-3)

2, x + y = 2xy

<=> 2xy - x - y = 0

<=> 2(2xy - x - y) = 2.0

<=> 4xy - 2x - 2y = 0

<=> (4xy - 2x) - 2y - 1 = 0 - 1

<=> 2x(2y - 1) - (1 - 2y) = -1

<=> (2x - 1)(1 - 2y) = -1

=> 2x - 1 và 1 - 2y thuộc Ư(-1) = {\(\pm1\)}

Ta có bảng:

2x - 1 1 -1
1 - 2y -1 1
x 1 0
y 1 0
25 tháng 1 2017

Vậy các cặp (x;y) là (1;1) ; (0;0)