Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đặt \(A=x^2+x+1\)
\(=x^2+2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}+1\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=' xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_A=\dfrac{3}{4}\) khi \(x=-\dfrac{1}{2}\)
b) đặt \(B=2+x-x^2\)
\(=-x^2+x+2\)
\(=-\left(x^2-x-2\right)\)
\(=-\left[x^2-2\cdot x\cdot\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}-2\right]\)
\(=-\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{4}\right]\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
Dấu "=" xảy ra khi \(x=\dfrac{1}{2}\)
Vậy \(MAX_B=\dfrac{9}{4}\) khi \(x=\dfrac{1}{2}\)
c) đặt \(C=x^2-4x+1\)
\(=x^2-2\cdot x\cdot2+2^2-4+1\)
\(=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra khi \(x=2\)
Vậy \(MIN_c=-3\) khi \(x=2\)
d) đặt \(D=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1^2-1+11\)
\(=\left(2x+1\right)^2+10\ge10\)
Dấu "=" xảy ra khi \(x=-\dfrac{1}{2}\)
Vậy \(MIN_D=10\) khi \(x=-\dfrac{1}{2}\)
mấy câu còn lại tương tự
\(A=-x^2+6x-10=-\left(x^2-6x+9\right)-1=-\left(x-3\right)^2-1\le-1\)
Vậy GTLN của A là -1 khi x = 3
\(B=-2x^2-4x-10=-2\left(x^2+2x+1\right)-8=-2\left(x+1\right)^2-8\le-8\)
Vậy GTLN của B là -8 khi x = -1
\(C=-2x^2+3x-10=-2\left(x^2-\frac{3}{2}x+\frac{9}{16}\right)-\frac{71}{8}=-2\left(x-\frac{3}{4}\right)^2-\frac{71}{8}\le-\frac{71}{8}\)
Vậy GTLN của C là \(-\frac{71}{8}\)khi x = \(\frac{3}{4}\)
\(D=-x^2-y^2+2x-4y-10\)
\(D=-\left(x^2-2x+1\right)-\left(y^2+4y+4\right)-5\)
\(D=-\left(x-1\right)^2-\left(y+2\right)^2-5\le-5\)
Vậy GTLN của D là -5 khi x = 1; y = -2
a) \(A=\left(x+1\right)\left(2x-1\right)\)
\(A=2x^2+2x-x-1\)
\(A=2x^2+x-1\)
\(A=2\left(x^2+\dfrac{1}{2}x-\dfrac{1}{2}\right)\)
\(A=2\left(x^2+2.x\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}-\dfrac{1}{2}\right)\)
\(A=2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\)
Vì \(2\left(x+\dfrac{1}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{1}{4}\right)^2-\dfrac{9}{8}\ge-\dfrac{9}{8}\)
\(\Rightarrow Amin=-\dfrac{9}{8}\Leftrightarrow x=-\dfrac{1}{4}\)
\(B=4x^2-4xy+2y^2+1\)
\(B=\left(2x\right)^2-2.2x.y+y^2+y^2+1\)
\(B=\left(2x-y\right)^2+y^2+1\)
Vì \(\left(2x-y\right)^2\ge0\) với mọi x và y
\(y^2\ge0\) với mọi y
\(\Rightarrow\left(2x-y\right)^2+y^2+1\ge1\)
\(\Rightarrow Bmin=1\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\y=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(C=5x-3x^2+2\)
\(C=-\left(3x^2-5x-2\right)\)
\(C=-3\left(x^2-\dfrac{5}{3}x-\dfrac{2}{3}\right)\)
\(C=-3\left(x^2-2.x.\dfrac{5}{6}+\dfrac{25}{36}-\dfrac{25}{36}-\dfrac{2}{3}\right)\)
\(C=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\)
Vì \(-3\left(x-\dfrac{5}{6}\right)^2\le0\) với mọi x
\(\Rightarrow-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{49}{12}\le\dfrac{49}{12}\)
\(\Rightarrow Cmax=\dfrac{49}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(D=-8x^2+4xy-y^2+3\)
\(D=-\left(4x^2-4xy+y^2\right)-4x^2+3\)
\(D=-\left(2x-y\right)^2-4x^2+3\)
Vì \(-\left(2x-y\right)^2\le0\) với mọi x và y
\(-4x^2\le0\) với mọi x
\(\Rightarrow-\left(2x-y\right)^2-4x^2+3\le3\) với mọi x và y
\(\Rightarrow Dmax=3\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
\(E=x^2-8x+38\)
\(E=x^2-2.x.4+16+22\)
\(E=\left(x-4\right)^2+22\)
Vì \(\left(x-4\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x-4\right)^2+22\ge22\) với mọi x
\(\Rightarrow Emin=22\Leftrightarrow x=4\)
\(F=6x-x^2+1\)
\(F=-\left(x^2-6x-1\right)\)
\(F=-\left(x^2-2.x.3+9-9-1\right)\)
\(F=-\left(x-3\right)^2+10\)
Vì \(-\left(x-3\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-3\right)^2+10\le10\)
\(\Rightarrow Fmax=10\Leftrightarrow x=3\)
\(a,A=-x^2+6x-10\)
\(=-x^2+6x-9-1\)
\(=-\left(x^2-6x+9\right)-1\)
\(=-\left(x-3\right)^2-1\)
Ta có: \(-\left(x-3\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-3\right)^2-1\le-1\forall x\)
=> Max A =-1 tại \(-\left(x-3\right)^2=0\Rightarrow x=3\)
cn lại lm tg tự
=.= hok tốt!!
a ) \(x^2-x+1\)
\(\Leftrightarrow\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right)+\dfrac{3}{4}\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có : \(\left(x-\dfrac{1}{2}\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Vậy GTNN là \(\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}.\)
\(A=x^2+12x+36=x^2+12x+36+3=\left(x+6\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=-6
\(B=9x^2-12x+4-4=\left(3x-2\right)^2-4\ge-4\)
Dấu '=' xảy ra khi x=2/3
\(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
D ez nhất :v
\(D=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+5\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+5\ge5\)
Đẳng thức xảy ra khi x = 1 và y = -2
\(A=\left[\left(x^2-2xy+y^2\right)+4\left(x-y\right)+4\right]+\left(y^2-2y+1\right)+2020\)
\(=\left[\left(x-y\right)^2+2\left(x-y\right).2+2^2\right]+\left(y-1\right)^2+2020\)
\(=\left(x-y+2\right)^2+\left(y-1\right)^2+2020\ge2020\)
Dấu "=" xảy ra khi y = 1 và x - y + 2 = 0 tức là x = y - 2 = -1
Có link câu này bạn tham khảo xem có được không nhé
https://h.vn/hoi-dap/question/535151.html
Học tốt nhé!
a) A= -x2 + 6x -10
= -(x2 - 6x) -10
= -(x2 - 2. x .3 +32 -9)- 10
= -( x-3 )2 +9 -10
= - (x-3)2 -1 \(\le\)-1 với mọi giá trị của x
Dấu '' = '' xảy ra khi và chỉ khi
x-3 =0
\(\Leftrightarrow\)x=3
Vậy giá trị lớn nhất của biểu thức A là -1 tại x =3
CÁC PHẦN KHÁC CẬU LÀM TƯƠNG TỰ
b) B= -2x2-4x-10
= -2(x2+ 2x ) -10
= -2 (x2 +2x+12 -1)-10
=-2(x+1)2 +2 -10
=-2(x+1)2 -8 \(\le\)-8 với mọi giá trị của x
Dấu " ='' xảy ra khi và chỉ khi
x+1=0
............................
c) C= -2x2 +3x -10
= -2(x2 -\(\frac{3}{2}\)x) -10
= -2( x2 - 2.x.\(\frac{3}{4}\)+ \(\frac{3^2}{4^2}\)-\(\frac{9}{16}\))-10
= -2(x-\(\frac{3}{4}\))2 +\(\frac{9}{8}\)-10
=-2(x- \(\frac{3}{4}\))2 +\(\frac{-71}{8}\)\(\le\)\(\frac{-71}{8}\)với mọi giá trị của x
Dấu bằng ''='' xảy ra khi và chi khi
x-\(\frac{3}{4}\)=0
.......................................................
d) D= -x2 -y2+2x-4y -10
=(-x2+2x) +( -y2 -4y) -10
= -(x2 -2x+1 -1) -(y2 +4y+22-4 )-10
=-(x-1)2 +1 -(y+2)2 +4 -10
=-(x-1)2 - (y+2)2 -5 \(\le\)5 với mọi giá tri của x
Dấu '' ='' xảy ra khi và chỉ khi
\(\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\)
......................................................
e) XIN LỖI TỚ CHƯA NGHĨ RA
a) \(4x^2+12x+1=\left(4x^2+12x+9\right)-8=\left(2x+3\right)^2-8\ge-8\)
\(ĐTXR\Leftrightarrow x=-\dfrac{3}{2}\)
b) \(4x^2-3x+10=\left(4x^2-3x+\dfrac{9}{16}\right)+\dfrac{151}{16}=\left(2x-\dfrac{3}{4}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\)
\(ĐTXR\Leftrightarrow x=\dfrac{3}{8}\)
c) \(2x^2+5x+10=\left(2x^2+5x+\dfrac{25}{8}\right)+\dfrac{55}{8}=\left(\sqrt{2}x+\dfrac{5\sqrt{2}}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\)
\(ĐTXR\Leftrightarrow x=-\dfrac{5}{4}\)
d) \(x-x^2+2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{9}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{9}{4}\le\dfrac{9}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
e) \(2x-2x^2=-2\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{2}=-2\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\le\dfrac{1}{2}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{2}\)
f) \(4x^2+2y^2+4xy+4y+5=\left(4x^2+4xy+y^2\right)+\left(y^2+4y+4\right)+1=\left(2x+y\right)^2+\left(y+2\right)^2+1\ge1\)
\(ĐTXR\Leftrightarrow\) \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
a: Ta có: \(4x^2+12x+1\)
\(=4x^2+12x+9-8\)
\(=\left(2x+3\right)^2-8\ge-8\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{3}{2}\)
b: Ta có: \(4x^2-3x+10\)
\(=4\left(x^2-\dfrac{3}{4}x+\dfrac{5}{2}\right)\)
\(=4\left(x^2-2\cdot x\cdot\dfrac{3}{8}+\dfrac{9}{64}+\dfrac{151}{64}\right)\)
\(=4\left(x-\dfrac{3}{8}\right)^2+\dfrac{151}{16}\ge\dfrac{151}{16}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{8}\)
c: Ta có: \(2x^2+5x+10\)
\(=2\left(x^2+\dfrac{5}{2}x+5\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}+\dfrac{55}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2+\dfrac{55}{8}\ge\dfrac{55}{8}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{5}{4}\)