Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.(√x -2)^2 ≥ 0 --> x -4√x +4 ≥ 0 --> x+16 ≥ 12 +4√x --> (x+16)/(3+√x) ≥4
--> Pmin=4 khi x=4
2. Đặt \(\sqrt{x^2-4x+5}=t\ge1\)1
=> M=2x2-8x+\(\sqrt{x^2-4x+5}\)+6=2(t2-5)+t+6
<=> M=2t2+t-4\(\ge\)2.12+1-4=-1
Mmin=-1 khi t=1 hay x=2
Ta có : \(\left|A\right|=\left|x\right|.\left(99+\sqrt{101-x^2}\right)=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\)
Áp dụng BĐT Bunhiacopxki và Cauchy liên tiếp , ta có \(\left|A\right|=\left|x\right|.\left(\sqrt{99}.\sqrt{99}+1.\sqrt{101-x^2}\right)\le\left|x\right|.\sqrt{\left(99+1\right).\left(99+101-x^2\right)}\)
\(\Leftrightarrow\left|A\right|\le10.\sqrt{x^2.\left(200-x^2\right)}\le10.\frac{200-x^2+x^2}{2}=1000\)
\(\Rightarrow\left|A\right|\le1000\Leftrightarrow-1000\le A\le1000\)
min A = -1000 tại x = -10
max A = 1000 tại x = 10