Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=x^2-2.\frac{1}{2}.x+\frac{1}{4}-\frac{1}{4}+y^2+2.3.y+9-9+10\)
\(M=\left(x^2-2.\frac{1}{2}x+\frac{1}{4}\right)+\left(y^2+2.3.y+9\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy \(M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Chọn mình nha cảm ơn chúc bạn học tốt
Ta có :
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
\(\Rightarrow M_{min}=\frac{3}{4}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
Vậy ...
\(M=x^2+y^2-x+6y+10\)
\(=\left(x^2-2.x\frac{1}{2}+\frac{1}{4}\right)+\left(y^2+6y+9\right)+10,75\)
\(=\left(x-\frac{1}{2}\right)^2+\left(x+3\right)^2+10,75\ge10,75\)
\(MinM=10,75\Leftrightarrow\hept{\begin{cases}x-\frac{1}{2}=0\\x+3=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\x=-3\end{cases}}}\)
Ta có: M = x2 + 6y + 10 + y2 - x
M = ( x2 - x + 1/4 ) + ( y2 + 6y + 9) + 3/4
M = ( x - 1/2)2 + ( y + 3 )2 + 3/4
- Vì ( x - 1/2 )2 >= 0 với mọi x; ( y + 3 )2 >= 0 với mọi y => M >= 3/4 với moi x,y.
Dấu = xra <=> x - 1/2 = 0 và y + 3 = 0
<=> x = 1/2 và y = -3.
Ta có:
\(M=x^2+y^2-x+6y+10\)
\(M=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+6y+9\right)+\frac{3}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-\frac{1}{2}\right)^2=0\\\left(y+3\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-3\end{cases}}\)
M = x2 + y2 - x + 6y + 10
= ( x2 - x + 1/4 ) + ( y2 + 6y + 9 ) + 3/4
= ( x - 1/2 )2 + ( y + 3 )2 + 3/4 ≥ 3/4 ∀ x
Dấu "=" xảy ra <=> x = 1/2 ; y = -3
=> MinM = 3/4 <=> x = 1/2 ; y = -3
\(Q=2\left(x^2-3x+\frac{9}{4}\right)-\frac{9}{2}=2\left(x-\frac{3}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy Min Q=9/2 <=> x=3/2
b) \(M=x^2-x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy Min M=3/4 <=> x=1/2
Ta có : 2x2 - 6x
= \(\left(\sqrt{2}x\right)^2-2.\sqrt{2}x.6+36-36\)
Q\(=\left(\sqrt{2}x-6\right)^2-36\)
Vì \(\left(\sqrt{2}x-6\right)^2\ge0\forall x\)
Nên : Q = \(=\left(\sqrt{2}x-6\right)^2-36\) \(\ge-36\forall x\)
Vậy \(Q_{min}=-36\) khi \(\sqrt{2}x-6=0\) => \(\sqrt{2}x=6\) => \(x=6:\sqrt{2}=3\sqrt{2}\)
\(M=x^2+y^2-x+6y+10\)
\(M=x^2-2.\frac{1}{2}x+\frac{1}{4}+y^2+6y+9+1-\frac{1}{4}\)
\(M=\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+1-\frac{1}{4}\)
\(M_{min}=1-\frac{1}{4}=\frac{3}{4}\Leftrightarrow x=\frac{1}{2},y=-3\)
P/s tham khảo nha
\(x^2+y^2-x+6y+10\)
=\(x^2-2\cdot\frac{1}{2}\cdot x+\frac{1}{4}+y^2+6y+9+\frac{3}{4}\)
=\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)
Có \(\left(x-\frac{1}{2}\right)^2\ge0\)
\(\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2\ge0\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x-\frac{1}{2}=0\Rightarrow x=\frac{1}{2}\)
\(y+3=0\Rightarrow y=-3\)
Vậy MinM = \(\frac{3}{4}\)\(\Leftrightarrow\)\(x=\frac{1}{2}\)và \(y=-3\)
\(\left(x-\frac{1}{2}\right)^2+\left(y+3\right)^2+\frac{3}{4}\)