K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2017

A)\(A=2.x^2-4.x+10\)

\(2A=4.x^2-8x+20\)

\(2A=4.x^2-2.2x.2+2^2+16\)

\(2A=\left(2x-2\right)^2+16\ge16\forall x\)

\(A=8\)

DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)

VẬY GTNN CỦA A LÀ 8 VỚI x=1

C)\(\left(x-1\right)\left(x+2\right)+3x+5\)

\(C=x^2+2x-x-2+3x+5\)

\(C=x^2+4x+3\)

\(4C=4x^2+16x+12\)

\(4C=4x^2+2.2x.4+4^2-4\)

\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)

\(C=-1\)

DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)

VẬY GTNN CỦA C  LÀ -1 VỚI X=-2

XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI

a) Ta có: \(3x^2\cdot\left(2x^3-x+5\right)\)

\(=6x^5-3x^3+15x^2\)

b) Ta có: \(\left(4xy+3y-5\right)\cdot x^2y\)

\(=4x^3y^2+3x^2y^2-5x^2y\)

c) Ta có: \(\left(3x-2\right)\left(4x+5\right)-6x\left(2x-1\right)\)

\(=12x^2+15x-8x-10-12x^2+6x\)

\(=13x-10\)

d) Ta có: \(\left(3x-5\right)\left(x^2-5x+7\right)\)

\(=3x^3-15x^2+21x-5x^2+25x-35\)

\(=3x^3-20x^2+46x-35\)

3 tháng 4 2016
Trần công Chánhhs tích cực
Lê Thị Hồng Thêmhs chuyên cần
Phan Thị Thùy Ngânhs siêng năng
NV
18 tháng 9 2019

1/a/ \(13x-2x^2=-2\left(x^2-2.\frac{13}{4}x+\frac{169}{16}\right)+\frac{169}{8}=-2\left(x-\frac{13}{4}\right)^2+\frac{169}{8}\le\frac{169}{9}\)

b/ \(-3x^2-8x=-3\left(x^2+2.\frac{4}{3}x+\frac{16}{9}\right)+\frac{16}{3}=-3\left(x+\frac{4}{3}\right)^2+\frac{16}{3}\le\frac{16}{3}\)

Câu 2:

a/ \(x^2+2xy+2y^2+4x+20\)

\(=2\left(\frac{x^2}{4}+xy+y^2\right)+\frac{1}{2}\left(x^2+8x+16\right)+12\)

\(=2\left(\frac{x}{2}+y\right)^2+\frac{1}{2}\left(x+4\right)^2+12\ge12\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=-4\\y=2\end{matrix}\right.\)

b/ \(5x^2-2x+y^2-2y-4xy+8\)

\(=\left(4x^2+y^2+1-4xy+4x-2y\right)+\left(x^2-6x+9\right)-2\)

\(=\left(2x-y+1\right)^2+\left(x-3\right)^2-2\ge-2\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=3\\y=7\end{matrix}\right.\)

18 tháng 9 2019

Mk cảm ơn bn nhìu nhé

23 tháng 1 2018

ai giúp vs

28 tháng 12 2019

(x-2y-2)2+(y-6)2 =39-2A

A=< 39/2, max A là 39/2 khi x =14 và y =6

1 tháng 10 2017

\(2x^2+2y^2-4xy+2x-2y+4\)

\(=2\left(x-y\right)^2+2\left(x-y\right)+4\)

\(=2\left[\left(x-y\right)^2+2\left(x-y\right)\frac{1}{2}+\frac{1}{4}\right]+\frac{7}{2}\)

\(=2\left(x-y+\frac{1}{2}\right)^2+\frac{7}{2}\)

\(\Rightarrow A\ge\frac{7}{2}\)

Dấu = bn tự tính nhé

20 tháng 9 2019

-2x2y(3x2y2 - 4xy2 + 2y - 1)

= 2x2y(3x2y2 + 4xy2 - 2y + 1)

= 6x4y3 + 8x3y3 - 4xy3 + 2x2y

14 tháng 7 2017

Bài 1

a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)

Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)

Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)

Vậy minA=-9/8 khi x=-1/4

b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)

Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)

Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0

Vậy minB=1 khi x=y=0

14 tháng 7 2017

lý luận tương tự bài 1, bài này mình làm tắt

Bài 2:

a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)

\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)

Dấu "=" xảy ra khi x=5/6

b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)

\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)

Dấu "=" xảy ra khi x=y=0

1: \(=\left(x-3y\right)\left(x-y\right)-\left(x-3y\right)=\left(x-3y\right)\left(x-y-1\right)\)

4: \(=6x^2-4xy+3xy-2y^2+3x-2y\)

\(=\left(3x-2y\right)\left(2x+y\right)+3x-2y=\left(3x-2y\right)\left(2x+y+1\right)\)