K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

\(x^2-6x+y^2-10y-15\)

\(=x^2-6x+y^2-10y+9+25-49\)

\(=\left(x^2-6x+9\right)+\left(y^2-10y+25\right)-49\)

\(=\left(x-3\right)^2+\left(y-5\right)^2-49\ge-49\)

Vậy GTNN của bt là -49\(\Leftrightarrow\hept{\begin{cases}x-3=0\\y-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=5\end{cases}}\)

22 tháng 10 2019

\(x^2-6x+y^2-10y-15\)\

\(=\left(x^2-9x+9\right)+\left(y^2-10y+25\right)-49\)

\(=\left(x-3\right)^2+\left(y-5\right)^2-49\)\(\ge49\)

vậy GTNN là 49

19 tháng 9 2018

Bài 1 :

1) 4x2 - y2 = ( 2x + y ) ( 2x - y )
2) 9x2 - 4y2 = ( 3x - 2y ) ( 3x + 2y )

3) 4x2 + y2 + 4xy = ( 2x + y )2

Bài 2:

1) 2x2 + 8x = 0

=> 2x ( x + 4 ) = 0

=> \(\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\) 

=> \(\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

2) 3 ( x - 4 ) + x2 - 4x = 0

=> 3 ( x - 4 ) + x ( x - 4 ) = 0

=> ( x - 4 ) ( 3 + x ) = 0

=> \(\orbr{\begin{cases}x-4=0\\3+x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=4\\x=-3\end{cases}}\)

3) 3 ( x - 2 ) = x2 - 2x 

=> 3 ( x - 2 ) - x2 + 2x = 0

=> 3 ( x - 2 ) - x ( x - 2 ) = 0

=> ( x - 2 ) ( 3 - x ) = 0

=> \(\orbr{\begin{cases}x-2=0\\3-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

4) x ( x - 2 ) - 6 ( 2 - x ) = 0

=> x ( x - 2 ) + 6 ( x - 2 ) = 0

=> ( x - 2 ) ( x + 6 ) = 0

=> \(\orbr{\begin{cases}x-2=0\\x+6=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=2\\x=-6\end{cases}}\)

5) 2x ( x + 5 ) = x2 + 5x

=> 2x ( x + 5 ) - x2 - 5x = 0

=> 2x ( x + 5 ) - x ( x + 5 ) = 0

=> ( x + 5 ) ( 2x - x ) = 0

=> \(\orbr{\begin{cases}x+5=0\\2x-x=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=-5\\x=0\end{cases}}\)

6 ) ( x - 2 )2 - x ( x + 3 ) = 9

=> x2 - 4x + 4 - x2 - 3x = 9

=> - 7x + 4 = 9

=> - 7x = 5

=> x = \(-\frac{5}{7}\)

19 tháng 9 2018

\(1,4x^2-y^2=\left(2x\right)^2-y^2=\left(2x-y\right)\left(2x+y\right)\)

\(2,9x^2-4y^2=\left(3x\right)^2-\left(2y\right)^2=\left(3x-2y\right)\left(3x+2y\right)\)

\(3,4x^2+y^2+4xy=\left(2x\right)^2+2.2x.y+y^2=\left(2x+y\right)^2\)

\(1,2x^2+8x=0\Rightarrow2x\left(x+4\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-4\end{cases}}\)

\(2,3\left(x-4\right)+x^2-4x=0\)

\(\Rightarrow3\left(x-4\right)+x\left(x-4\right)=0\)

\(\Rightarrow\left(3+x\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3+x=0\\x-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-3\\x=4\end{cases}}\)

\(3,3\left(x-2\right)=x^2-2x\)

\(\Rightarrow3\left(x-2\right)-x^2+2x=0\)

\(\Rightarrow3\left(x-2\right)-x\left(x-2\right)=0\)

\(\Rightarrow\left(3-x\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3-x=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

\(4,x\left(x-2\right)-6\left(2-x\right)=0\)

\(\Rightarrow x\left(x-2\right)+6\left(x-2\right)=0\)

\(\Rightarrow\left(x+6\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x+6=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-6\\x=2\end{cases}}\)

13 tháng 7 2016

\(C=\left(x^3-x^2y+xy^2-y^3\right)\left(x+y\right)=\left(x-y\right)^3\left(x+y\right)=\left(2--0,5\right)^3.\left(2+0,5\right)\)

\(=15,625\times2,5=39,0625\)

23 tháng 8 2017

Câu 1:

Ta có:\(x\left(x^2-y\right)+x\left(y^2-y\right)-x\left(x^2+y^2\right)\)

      \(=x\left(x^2-y+y^2-y-x^2-y^2\right)\)

      \(=-2xy\)

Tại \(x=\frac{1}{2};y=-100\) PT có dạng:

       \(=-2.\frac{1}{2}.\left(-100\right)=100\)

      

23 tháng 8 2017

CẢM ƠN BN

1 tháng 8 2017

b)

\(\left(x+2\right)^4=y^3+x^4\)

\(\Leftrightarrow y^3=\left(x+2\right)^4-x^4=x^4+8x^3+24x^2+32x+16-x^4\)

\(\Leftrightarrow y^3=8x^3+24x^2+32x+16\)

+ Vì \(24x^2+32x+16=4\left(6x^2+8x+4\right)=4\left[2x^2+4\left(x+1\right)^2\right]>0\forall x\)

\(\Rightarrow y^3>8x^3=\left(2x\right)^3\)              (1)

+ Xét \(M=\left(2x+3\right)^3-y^3=8x^3+36x^2+54x+27-8x^3-24x^2-32x-16\)

\(\Rightarrow M=12x^2+22x+11=x^2+11\left(x+1\right)^2>0\forall x\)                 (2)

Từ (1) và (2) \(\Rightarrow\left(2x\right)^3< y^3< \left(2x+3\right)^3\)

\(\Rightarrow\orbr{\begin{cases}y=2x+1\\y=2x+2\end{cases}}\)

* Với \(y=2x+1\), thay vào biểu thức ta có :

\(\left(2x+1\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+12x^2+6x+1=8x^3+24x^2+32x+16\)

\(\Leftrightarrow12x^2+26x+15=0\)

\(\Leftrightarrow2x\left(6x+13\right)=-15\)

Vì x nguyên nên \(2x\left(6x+13\right)⋮2\), mà -15 ko chia hết cho 2 nên PT vô nghiệm 

* Với \(y=2x+2\), ta có :

\(\left(2x+2\right)^3=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x^3+24x^2+24x+8=8x^3+24x^2+32x+16\)

\(\Leftrightarrow8x+8=0\)

\(\Leftrightarrow x=-1\)

     Suy ra : \(y=2.\left(-1\right)+2=0\)

                     Vây PT có nghiệm \(\hept{\begin{cases}x=-1\\y=0\end{cases}}\)

1 tháng 8 2017

a)

\(x^2+xy+y^2=x^2y^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2y^2+xy\)

\(\Leftrightarrow\left(x+y\right)^2=xy\left(xy+1\right)\)

Suy ra : \(\orbr{\begin{cases}xy=0\\xy+1=0\end{cases}}\)

+ Với  \(xy=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

Thay vào biểu thức  ta đc \(x=y=0\)

+ Với \(xy+1=0\Leftrightarrow xy=-1\)

Vì x, y nguyên nên \(\left(x;y\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)

Thay vao biểu thức ta thấy thỏa mãn !

                 Vậy \(\left(x;y\right)\in\left\{\left(0;0\right);\left(1;-1\right);\left(-1;1\right)\right\}\)

24 tháng 7 2019

Đầu bài bạn thiếu đúng ko xem lại ik

25 tháng 7 2019

ko thiếu bn ạ!đây là bài đội mà!

8 tháng 8 2017

1/ \(M=x^2-2x.15+225-198\)

\(M=\left(x-15\right)^2-198\ge-198\)

\(Min\)\(M=-198\Leftrightarrow x=15\)

KO PHẢI CHUYỆN YÊU ĐƯƠNG MÀ ĐÂY LÀ TOÁN

Mk làm bài 2 thui, bài 1 nhân ra rùi rút gọn đi là đc 

a) \(5x^2-5y^2=5\left(x^2-y^2\right)=5\left(x-y\right)\left(x+y\right)\)

b) \(x^2-5xy+x-5y=x\left(x-5y\right)+\left(x-5y\right)=\left(x-5y\right)\left(x+1\right)\)

c) Phần này phải là \(x^2-y^2+4x+4y\)mới đúng, như vậy nó sẽ là :\(x^2-y^2+4x+4y=\left(x+y\right)\left(x-y\right)+4\left(x+y\right)=\left(x+y\right)\left(x-y+4\right)\)

d) \(x^2-2x-y^2-2y=\left(x^2-y^2\right)-\left(2x+2y\right)=\left(x+y\right)\left(x-y\right)-2\left(x+y\right)=\left(x+y\right)\left(x-y-2\right)\)

Chúc bạn hok tốt !

13 tháng 8 2020

( x - 3 )2 + ( x - 2 )2

= x2 - 6x + 9 + x2 - 4x + 4

= 2x2 - 10x + 13

= 2( x2 - 5x + 25/4 ) + 1/2

= 2( x - 5/2 )2 + 1/2

\(2\left(x-\frac{5}{2}\right)^2\ge0\forall x\Rightarrow2\left(x-\frac{5}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\)

Dấu " = " xảy ra <=> x - 5/2 = 0 => x = 5/2

Vậy GTNN của biểu thức = 1/2 , đạt được khi x = 5/2