Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(x-1)(x-2)(x-3)(x-4)+15
=(x2-5x+4)(x2-5x+6)+15
Đặt t=x2-5x+4 ta có:
t(t+2)+15=t2+2t+15
=t2+2t+1+14=(t+1)2+14\(\ge\)14
Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)
Vậy....
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
Mk chỉ làm hai bài đầu gợi ý thôi chứ mk cũng ko đủ TG
a)\(A=x^2-6x+15\)
\(\Leftrightarrow A=x^2-6x+9+6\)
\(\Leftrightarrow A=\left(x-3\right)^2+6\)
Vì \(\left(x-3\right)^2\ge0\)\(\Rightarrow\)\(\left(x-3\right)^2+6\ge6\)
Dấu = xảy ra khi x - 3 = 0 ; x = 3
Vậy Min A = 6 khi x=3
b)\(B=x^2+4x\)
\(\Leftrightarrow B=x^2+4x+4-4\)
\(\Leftrightarrow B=\left(x+2\right)^2-4\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2-4\ge-4\)\
Dấu = xảy ra khi x + 2 = 0 ; x = -2
Vậy Min B = -4 khi x =-2
Trả lời:
a, \(A=x^2-6x+15=\left(x^2-6x+9\right)+6=\left(x-3\right)^2+6\ge6\forall x\)\(6\forall x\)
Dấu "=" xảy ra khi x - 3 = 0 <=> x = 3
Vậy GTNN của A = 6 khi x = 3
b, \(B=x^2+5x+7=\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{3}{4}=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra khi \(x+\frac{5}{2}=0\Leftrightarrow x=-\frac{5}{2}\)
Vậy GTNN của B = 3/4 khi x = - 5/2
c, \(C=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+10\)
\(=\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]+10\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+10\)
Đặt \(x^2+5x+4=t\)
\(\Rightarrow\left(x^2+5x+4\right)\left(x^2+5x+6\right)+10=t\left(t+2\right)+10\)
\(=t^2+2t+10=\left(t^2+2t+1\right)+9=\left(t+1\right)^2+9\ge9\forall t\)
Dấu "=" xảy ra khi \(t+1=0\Leftrightarrow t=-1\)
hay \(x^2+5x+4=-1\)
\(\Leftrightarrow x^2+5x+5=0\)
\(\Leftrightarrow4\left(x^2+5x+5\right)=0\)
\(\Leftrightarrow4x^2+20x+20=0\)
\(\Leftrightarrow\left(4x^2+20x+25\right)-5=0\)
\(\Leftrightarrow\left(2x+5\right)^2-5=0\)
\(\Leftrightarrow\left(2x+5-\sqrt{5}\right)\left(2x+5+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x+5-\sqrt{5}=0\\2x+5+\sqrt{5}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}}\)
Vậy GTNN của C = 9 khi \(\orbr{\begin{cases}x=\frac{-5+\sqrt{5}}{2}\\x=\frac{-5-\sqrt{5}}{2}\end{cases}}\)
\(A=\left(x^2+x+1\right)^2-4\left(x+2\right)^2+15\)
\(\Rightarrow A=\left(x^2+x+1\right)^2-\left[2\left(x+2\right)\right]^2+15\)
\(\Rightarrow A=\left(x^2+x+1+2x+2\right)\left(x^2+x+1-2x-2\right)+15\)
\(\Rightarrow A=\left(x^2+3x+3\right)\left(x^2-x-1\right)+15\)
\(\Rightarrow A=\left(x^2+3x+\dfrac{9}{4}-\dfrac{9}{4}+3\right)\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}-1\right)+15\)
\(\Rightarrow A=\left[\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right]\left[\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\right]+15\left(1\right)\)
Ta có : \(\left\{{}\begin{matrix}\left(x+\dfrac{3}{2}\right)^2\ge0,\forall x\\\left(x-\dfrac{1}{2}\right)^2\ge0,\forall x\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4},\forall x\\\left(x-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4},\forall x\end{matrix}\right.\)
\(\left(1\right)\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\left[\left(-\dfrac{3}{2}-\dfrac{1}{2}\right)^2-\dfrac{5}{4}\right]+15\left(x=-\dfrac{3}{2}\right)\\A\ge\left[\left(\dfrac{1}{2}+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\right].\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\left[4-\dfrac{5}{4}\right]+15\left(x=-\dfrac{3}{2}\right)\\A\ge\left[4+\dfrac{3}{4}\right].\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{3}{4}.\dfrac{9}{4}+15\left(x=-\dfrac{3}{2}\right)\\A\ge\dfrac{19}{4}.\left(-\dfrac{5}{4}\right)+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{27}{16}+15\left(x=-\dfrac{3}{2}\right)\\A\ge-\dfrac{95}{16}+15\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A\ge\dfrac{267}{16}\left(x=-\dfrac{3}{2}\right)\\A\ge\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Rightarrow A\ge\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\)
\(\Rightarrow GTNN\left(A\right)=\dfrac{145}{16}\left(x=\dfrac{1}{2}\right)\)