Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài 2 nhân p vs x+y+xy rồi t định áp dụng bđt (x+y+z)(1/x+1/y+1/z)>=9 nhưng vướng
đat a=......
nhan ca 2 ve cua a voi 2 ta dc 2a=
ban tach ra de dc hang dang thuc roi ket luan
Đặt \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\)
Ta có bđt sau \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)\) tự chứng mình nha
Áp dụng \(a=x,b=y,c=1\)
Ta có : \(B=\frac{\left(x+y+1\right)^2}{xy+x+y}\ge3\)
Ta có : \(A=\frac{1}{B}+B=\frac{1}{B}+\frac{B}{9}+\frac{8B}{9}\ge\frac{2}{3}+\frac{8}{3}=\frac{10}{3}\)
Dấu " = " xảy ra khi \(x=y=1\)
Áp dụng 2 bất đẳng thức phụ:
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
\(xy\le\frac{\left(x+y\right)^2}{4}\).Dấu "=" xảy ra khi và chỉ khi \(x=y\)
Áp dụng vào bài toán,ta có:
\(x^2+y^2\ge2\)
\(xy\le1\Leftrightarrow\frac{1}{xy}\ge1\)
Khi đó,ta có:\(x^2+y^2+\frac{1}{xy}\ge3\)
Dấu "=" xảy ra khi \(x=y=1\)
Thêm 2 vào bớt 2 ra biến đổi và dùng Cô si là xong ạ? + Áp dụng BĐT \(xy\le\frac{\left(x+y\right)^2}{4}\) (cũng là hệ quả của cô si thôi)
Ta có: \(P=x^2+y^2+\frac{1}{xy}=\left(x^2+1\right)+\left(y^2+1\right)+\frac{1}{xy}-2\)
\(\ge2x+2y+\frac{1}{\frac{\left(x+y\right)^2}{4}}-2=2\left(x+y\right)+\frac{4}{\left(x+y\right)^2}-2\)
\(=2.2+\frac{4}{2^2}-2=5-2=3\)
Dấu "=" xảy ra khi x = y = 1
Vậy \(P_{min}=3\Leftrightarrow x=y=1\)
\(A=x^2+y^2-xy-x+y+1\)
\(12A=12x^2+12y^2-12xy-12x+12y+12\)
\(=3\left(x^2+2xy+y^2\right)+9x^2+9y^2+4-18xy-12x+12y+8\)
\(=3\left(x+y\right)^2+\left(3x-3y-2\right)^2+8\ge8\)
Dấu \(=\)khi \(\hept{\begin{cases}x+y=0\\3x-3y-2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}\\y=-\frac{1}{3}\end{cases}}\)
Vậy \(minA=\frac{2}{3}\).