K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2015

Ta có

T=/x-1/+/x-2/+/x-3/+/x-4/

=/x-1/+/2-x/+/x-3/+/4-x/

Áp dụng bất đẳng thức /A/+/B/ \(\ge\)/A+B/

=>T \(\ge\)/x-1+2-x+x-3+4-x/=/2/=2

nhớ tick mình nha

 

10 tháng 4 2017

Lập bảng xét dấu rồi làm nha bạn.

10 tháng 4 2017

mk mới lớp 7 k giải đc toán 8 

28 tháng 6 2017

Vì trị tuyệt đối của một số lớn hơn hoặc bằng số đó nên :

\(A=\left|x+1\right|+\left|x-3\right|=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

\(\Rightarrow minA=4\)\(\Rightarrow\hept{\begin{cases}x+1\ge0\\3-x\ge0\end{cases}\Leftrightarrow-1\le}x\le3\)

10 tháng 9 2017

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2

1: |1-5x|-1=3

=>|5x-1|=4

=>5x-1=4 hoặc 5x-1=-4

=>5x=5 hoặc 5x=-3

=>x=1 hoặc x=-3/5

2: 4|2x-1|+3=15

=>4|2x-1|=12

=>|2x-1|=3

=>2x-1=3 hoặc 2x-1=-3

=>x=2 hoặc x=-1

8 tháng 4 2022

3,\(\left|x+4\right|=2x+1\)

TH1: x+4≥0⇔x≥-4,pt có dạng:

x+4=2x+1⇔-x=-3⇔x=3(t/m)

TH2:x+4<0⇔x<-4,pt có dạng:

-x-4=2x+1⇔-3x=5⇔x=\(\dfrac{-5}{3}\)(loại)

Vậy pt đã cho có tập nghiệm S=\(\left\{3\right\}\)

4,\(\left|3x+4\right|=x-3\)

TH1: 3x-4≥0⇔3x≥4⇔x≥\(\dfrac{4}{3}\),pt có dạng:

3x-4=x-3⇔2x=1⇔x=\(\dfrac{1}{2}\)(loại)

TH2: 3x-4<0⇔3x<4⇔x<\(\dfrac{4}{3}\),pt có dạng:

-3x+4=x-3⇔-4x=-7  ⇔x=1,75(loại)

Vậy pt đã cho vô nghiệm

 

1 tháng 11 2017






                            
1 tháng 11 2017

không chắc là đúng đâu

10 tháng 12 2016

Vì \(\left|x-2\right|\ge0\)

     \(\left|x-3\right|\ge0\)

     \(\left|x-6\right|\ge0\)

             Do đó:\(\left|x-2\right|+\left|x-3\right|+\left|x-6\right|\ge0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x-2=0\\x-3=0\\x-6=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\x=3\\x=6\end{cases}}\)

                               Vậy Min F(x)=0 khi x=2;3;6

10 tháng 12 2016

f(x)=|x-2|+|x-3|+|x-6| >= |2-x+x-6|=|-4|=4 (bđt |a|+|b| >= |a+b|)

dấu "=" xảy ra <=> (2-x)(x-6) >= 0 <=>2 <=x <= 6