K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2021

\(=x-2008-\sqrt{x-2008}+\dfrac{1}{4}+\dfrac{8031}{4}\\ =\left(\sqrt{x-2008}-\dfrac{1}{2}\right)^2+\dfrac{8031}{4}\ge\dfrac{8031}{4}\)

Dấu \("="\Leftrightarrow\sqrt{x-2008}=\dfrac{1}{2}\Leftrightarrow x-2008=\dfrac{1}{4}\Leftrightarrow x=\dfrac{8033}{4}\)

10 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) . Vậy thì \(x=t^2+2008\) 

Từ đó ta đưa bài toán về tìm giá trị nhỏ nhất của \(t^2+t+2008+\frac{1}{4}\)

Tới đây bạn có thể tự làm được :)

11 tháng 11 2016

nhập GTNN=2008 nó cho sai bạn ơi

11 tháng 11 2016

Đặt \(t=\sqrt{x-2008},t\ge0\) \(\Rightarrow x=t^2+2008\) thay vào BT : 

\(t^2+2008-t+\frac{1}{4}=\left(t-\frac{1}{2}\right)^2+2008\ge2008\)

Đẳng thức xảy ra khi t = 1/2 <=> x = 1/4

Vậy BT đạt giá trị nhỏ nhất bằng 2008 khi x = 1/4

11 tháng 11 2016

đẳng thức xảy ra khi t = 1/2 <=> x = 8033/4

cái này mới đúng nhé!

22 tháng 11 2019

\(P=x^{2008}-2008x+2008\)

\(P=x\left(x^{2007}-2008\right)+2008\ge2008\)

Dấu '' = '' xảy ra khi : x = 0

Vậy ...........

p/s : làm bừa 

22 tháng 11 2019

CTV gì mak kém thế

\(P=x^{2018}-2018x+2018\)

\(\Leftrightarrow P=x^{2018}+1+1+...+1-2018x+1\)(Ở giữa có 2017 số 1)

\(x^{2018}+1+1+...+1\left(2017so1\right)\ge2018\sqrt[2018]{x^{2018}}=2018x\)

\(\Rightarrow P\ge2018x-2018x+1=1\)

Vậy MIN = 1 <=> x = 1

p/s:CTV gà mờ

21 tháng 11 2017

Bạn ơi bài này có cho thêm đk x > 0 ko ?

21 tháng 11 2017

có pn nha

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 1:

\(a-\sqrt{a}+1=a-2.\sqrt{a}.\frac{1}{2}+\frac{1}{2^2}+\frac{3}{4}\)

\(=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\)

Ta thấy \((\sqrt{a}-\frac{1}{2})^2\geq 0, \forall a\) không âm

\(\Rightarrow a-\sqrt{a}+1=(\sqrt{a}-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}\)

Vậy GTNN của biểu thức là $\frac{3}{4}$. Dấu "=" xảy ra khi \((\sqrt{a}-\frac{1}{2})^2=0\Leftrightarrow a=\frac{1}{4}\)

AH
Akai Haruma
Giáo viên
20 tháng 7 2019

Câu 2:

\(\sqrt{1+2a-a^2}=\sqrt{2-(a^2-2a+1)}=\sqrt{2-(a-1)^2}\)

Ta thấy \((a-1)^2\geq 0, \forall a\) thuộc tập xác định

\(\Rightarrow 2-(a-1)^2\leq 2\)

\(\Rightarrow \sqrt{1+2a-a^2}=\sqrt{2-(a-1)^2}\leq \sqrt{2}\)

Vậy GTLN của biểu thức là $\sqrt{2}$ khi \((a-1)^2=0\Leftrightarrow a=1\)