K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 2 2017

\(\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{\sqrt{x}+1-4}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+1}-\frac{4}{\sqrt{x}+1}=1-\frac{4}{\sqrt{x+1}}\)

Để \(1-\frac{4}{\sqrt{x}+1}\) lớn nhất <=> \(\frac{4}{\sqrt{x}+1}\) lớn nhất => \(\sqrt{x}+1\)nhỏ nhất

Vì \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+1\ge1\)

Dấu "=" xảy ra <=> \(\sqrt{x}=0\Rightarrow x=0\)

Vậy .........

12 tháng 6 2018

đkxđ:x>=0

\(A^2=\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x+1}\right)^2}=\frac{x-2\sqrt{x}+1}{x+1}=1-\frac{2\sqrt{x}}{x+1}\)

vì \(\left(\sqrt{x}-1\right)^2=x-2\sqrt{x}+1>=0\Rightarrow x+1>=2\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x+1}< =\frac{x+1}{x+1}=1\Rightarrow1-\frac{2\sqrt{x}}{x+1}>=1-1=0\)

dấu = xảy ra khi x=1

vậy min A là 0 khi x-=1

12 tháng 6 2018

\(A^2>=0\Rightarrow A>=0\)nhá

30 tháng 7 2020

ĐKXĐ: \(\hept{\begin{cases}x\ge0\\\sqrt{x}-2\ne0\end{cases}}\)<=>\(\hept{\begin{cases}x\ge0\\x\ne4\end{cases}}\)

Ta có \(C=\left(x-1\right)-\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}\)

<=>\(C=\left(x-1\right)-\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}\)

<=>\(C=x-1-\left(2\sqrt{x}+1\right)\)

<=>\(C=x-2\sqrt{x}-2\)

<=>\(C=\left(\sqrt{x}-1\right)^2-3\ge-3\)

Vậy GTNN của C là -3. Dấu "=" xảy ra <=> x=1 (tm ĐKXĐ)

11 tháng 10 2016

Đặt \(\hept{\begin{cases}\sqrt{2x+3}=a\left(a>0\right)\\\sqrt{y}=b\left(b\ge0\right)\end{cases}}\)

Thì ta có

\(\frac{b^2}{a^2}=\frac{a+1}{b+1}\)

\(\Leftrightarrow b^3+b^2=a^3+a^2\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2\right)+\left(b-a\right)\left(b+a\right)=0\)

\(\Leftrightarrow\left(b-a\right)\left(b^2+ab+a^2+b+a\right)=0\)

Mà \(\left(b^2+ab+a^2+b+a\right)>0\)

\(\Rightarrow a=b\)

\(\Rightarrow2x+3=y\)

Thế vào Q ta được 

\(Q=2x^2-5x-12=\left(2x^2-\frac{2x\times\sqrt{2}\times5}{2\sqrt{2}}+\frac{25}{8}\right)-\frac{121}{8}\)

\(=\left(\sqrt{2}x-\frac{5}{2\sqrt{2}}\right)^2-\frac{121}{8}\ge\frac{-121}{8}\)

12 tháng 7 2017

Giúp với mn~~

12 tháng 7 2017

a) \(P=\frac{\left(x\sqrt{x}-3\right)-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-\left(x+4\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)

\(P=\frac{x+8}{\sqrt{x}+1}\)

b) Ta có \(x=14-6\sqrt{5}=9-2.3.\sqrt{5}+5=\left(3-\sqrt{5}\right)^2\)

Vậy nên \(\sqrt{x}=3-\sqrt{5}\)

Suy ra \(P=\frac{\left(3-\sqrt{5}\right)^2+8}{3-\sqrt{5}+1}=\frac{58-2\sqrt{5}}{11}\)

c) \(P=\frac{x+8}{\sqrt{x}+1}=\frac{\left(x-1\right)+9}{\sqrt{x}+1}=\left(\sqrt{x}-1\right)+\frac{9}{\sqrt{x}+1}\)

\(=\left(\sqrt{x}+1\right)+\frac{9}{\sqrt{x}+1}-2\ge2\sqrt{\left(\sqrt{x}+1\right).\frac{9}{\sqrt{x}+1}}-2=4\)

minP = 4 khi \(\sqrt{x}+1=\frac{9}{\sqrt{x}+1}\Rightarrow\sqrt{x}+1=3\Rightarrow x=4.\)

NV
12 tháng 2 2020

ĐKXĐ: ...

Đặt \(\sqrt{2x-1}=t\ge0\Rightarrow x=\frac{t^2+1}{2}\)

\(\Rightarrow A=\frac{2t^2+6t+4}{t^2+4t+3}=\frac{2\left(t+1\right)\left(t+2\right)}{\left(t+1\right)\left(t+3\right)}=\frac{2\left(t+2\right)}{t+3}=2-\frac{2}{t+3}\ge2-\frac{2}{3}=\frac{4}{3}\)

Dấu "=" xảy ra khi \(t=0\Leftrightarrow x=\frac{1}{2}\)

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v