Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ A = 2x2 + y2 - 2xy - 2x + 3
= (x2 - 2xy + y2) + (x2 - 2x + 1) + 2
= (x - y)2 + (x - 1)2 + 2\(\ge2\)
Bài 1:
a)
\(A=x^2+y^2-xy-3y+2016=(x^2-xy+\frac{y^2}{4})+(\frac{3y^2}{4}-3y+3)+2013\)
\(=(x-\frac{y}{2})^2+3(\frac{y}{2}-1)^2+2013\)
\(\geq 2013\)
Vậy GTNN của $A$ là $2013$. Giá trị này đạt được khi \(\left\{\begin{matrix} x-\frac{y}{2}=0\\ \frac{y}{2}-1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} y=2\\ x=1\end{matrix}\right.\)
b)
\(B=2x^2+5y^2+4xy-6+5x-9\)
\(=5(y^2+\frac{4}{5}xy+\frac{4}{25}x^2)+\frac{6}{5}x^2+5x-15\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x^2+\frac{25}{6}x+\frac{25^2}{12^2})-\frac{485}{24}\)
\(=5(y+\frac{2}{5}x)^2+\frac{6}{5}(x+\frac{25}{12})^2-\frac{485}{24}\geq \frac{-485}{24}\)
Vậy GTNN của $B$ là $\frac{-485}{24}$
Giá trị này đạt được khi \(\left\{\begin{matrix} y+\frac{2}{5}x=0\\ x+\frac{25}{12}=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=-\frac{25}{12}\\ y=\frac{5}{6}\end{matrix}\right.\)
c)
\(C=x^2+xy+y^2-3x-3y+2018\)
\(=\frac{4x^2+4xy+4y^2-12x-12y+8072}{4}=\frac{(4x^2+4xy+y^2)+3y^2-12x-12y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+3y^2-6y+8072}{4}\)
\(=\frac{(2x+y)^2-6(2x+y)+9+3(y^2-2y+1)+8060}{4}=\frac{(2x+y-3)^2+3(y-1)^2+8060}{4}\)
\(\geq \frac{8060}{4}=2015\)
Vậy $C_{\min}=2015$. Giá trị đạt được khi \(\left\{\begin{matrix} 2x+y-3=0\\ y-1=0\end{matrix}\right.\Leftrightarrow x=y=1\)
Bài 2:
a)
\(-A=x^2+4y^2-2x+4y-5=(x^2-2x+1)+(4y^2+4y+1)-7\)
\(=(x-1)^2+(2y+1)^2-7\geq -7\)
\(\Rightarrow A\leq 7\)
Vậy GTLN của $A$ là $7$.
Giá trị này đạt được khi \(\left\{\begin{matrix} x-1=0\\ 2y+1=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=1\\ y=\frac{-1}{2}\end{matrix}\right.\)
b)
ĐKĐB \(\Leftrightarrow B+2x^2+10y^2-6xy-4x+3y-2=0\)
\(\Leftrightarrow 2x^2-2x(3y+2)+(10y^2+3y-2+B)=0\)
Coi đây là PT bậc 2 ẩn $x$. Vì dấu "=" tồn tại nên PT luôn có nghiệm
\(\Rightarrow \Delta'=(3y+2)^2-2(10y^2+3y-2+B)\geq 0\)
\(\Leftrightarrow B\leq \frac{-11y^2+6y+8}{2}=\frac{\frac{97}{11}-11(y-\frac{3}{11})^2}{2}\leq \frac{97}{22}\)
Vậy $B_{\max}=\frac{97}{22}$
A = x2 + xy + y2 + 3y + 5
4A = 4x2 + 4xy + 4y2 + 12y + 20
4A = (4x2 + 4xy + y2) + (3y2 + 12y + 12) + 8
4A = (2x + y)2 + 3(y + 2)2 + 8 \(\ge\)8 \(\forall\)x;y
=> A \(\ge\)2
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x+y=0\\y+2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=\frac{-y}{2}\\y=-2\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-2\end{cases}}\)
Vậy MinA = 2 khi x = 1 và y = -2
A=x+y/2 VCB
A=x : y* t/2 VCB
A=xP:1/2 VCB
A=XPL:VCB
A=x/y:vcb*t/4
hok tốt
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi