K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

\(P=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-\frac{1}{2}x+\frac{1}{16}\right)+\frac{179}{4}}\)

\(P=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-\frac{1}{4}\right)^2+\frac{179}{4}}\ge1+\frac{\sqrt{179}}{2}=\frac{2+\sqrt{179}}{2}\)

2 tháng 8 2017

bạn Trình ơi cho mình hỏi cái dấu "="

11 tháng 5 2017

Viết nốt đi bạn ơi!! 

24 tháng 11 2019

Viết tiếp đi.Không có kết quả là bao nhiêu thì làm sao giải được???

5 tháng 7 2016

a) \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=-x^2+6x-5\) (ĐKXĐ : \(1\le x\le5\) )\

Ta có : \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}=\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

\(\Rightarrow\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}\ge1+3=4\)

Lại có : \(-x^2+6x-5=-\left(x^2-6x+9\right)+4=-\left(x-3\right)^2+4\le4\)

Do đó, phương trình tương đương với : \(\begin{cases}1\le x\le5\\\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=4\\-x^2+6x-5=4\end{cases}\)\(\Rightarrow x=3\left(TM\right)\)

Vậy nghiệm của phương trình là x = 3

b) \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)

\(\Leftrightarrow\sqrt{\left(x-2\right)^2+1}+\sqrt{\left(x-2\right)^2+4}+\sqrt{\left(x-2\right)^2+5}=3+\sqrt{5}\)

Mặt khác, ta có : \(\begin{cases}\sqrt{\left(x-2\right)^2+1}\ge1\\\sqrt{\left(x-2\right)^2+4}\ge2\\\sqrt{\left(x-2\right)^2+5}\ge\sqrt{5}\end{cases}\)\(\Rightarrow\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}\ge3+\sqrt{5}\)

Dấu đẳng thức xảy ra <=> x = 2.

Vậy nghiệm của phương trình :  x = 2

 

9 tháng 9 2016

đặt S=vế trái

ta có:S=\(\sqrt{3\left(x^2-6x+9\right)+1}+\sqrt{4\left(x^2-6x+9\right)+9}\)

S=\(\sqrt{3\left(x-3\right)^2+1}+\sqrt{4\left(x-3\right)^2+9}\)

ta thấy:\(\sqrt{3\left(x-3\right)^2+1}\ge\sqrt{1}=1\);\(\sqrt{4\left(x-3\right)^2+9}\ge\sqrt{9}=3\)

→S\(\ge\)4; xét vế phải :\(-5-x^2+6x=4-\left(x-3\right)^2\)\(\le\)4

vậy pt xảy ra khi x-3=0↔x=3

(đề là -5 -x2+6x thì khả nghi hơn)