Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,\(A\ge\frac{9}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\ge\frac{9}{\sqrt{3\left(x+y+z\right)}}=3\)=3
MInA=3<=>x=y=z=1
b)dùng cô si đi(đề thi chuyên bình phước năm 2016-2017)
Ta có : \(\left(\sqrt{x-1}-1\right)^2\ge0\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1\ge0\)
\(\Leftrightarrow x\ge2\sqrt{x-1}\)
\(\Leftrightarrow\dfrac{x}{\sqrt{x-1}}\ge2\)
Tương tự : \(\left(\sqrt{y-1}-1\right)^2\ge0\)
\(\Leftrightarrow y-1-2\sqrt{y-1}+1\ge0\)
\(\Leftrightarrow y\ge2\sqrt{y-1}\)
\(\Leftrightarrow\dfrac{y}{\sqrt{y-1}}\ge2\)
\(A=\dfrac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
Theo BĐT Cô - si cho hai số không âm ta có :
\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\ge2\sqrt{\dfrac{x^2y^2}{\left(x-1\right)\left(y-1\right)}}=2.\dfrac{x}{\sqrt{x-1}}.\dfrac{y}{\sqrt{y-1}}\ge2.2.2=8\)
Vậy GTNN của A là 8 . Khi và chỉ khi \(x=y=2\)
Biến đổi ta được: \(P=\frac{x^2}{x-1}+\frac{y^2}{y-1}\)
Áp dụng BĐT Cosi cho 2 số dương, ta có:
\(\frac{x^2}{x-1}+\frac{y^2}{y-1}\ge\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\)
Lại có: \(x=\left(x-1\right)+1\ge2\sqrt{x-1}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2\)
Tương tự: \(\frac{y}{\sqrt{y-1}}\ge2\Rightarrow\frac{2xy}{\sqrt{x-1}.\sqrt{y-1}}\ge8\)
Vậy Min P =8 khi và chỉ khi x=y=2
\(P=\frac{\left(x^3+y^3\right)-\left(x^2+y^2\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}=\frac{x^2}{y-1}+\frac{y^2}{x-1}\ge\frac{\left(x+y\right)^2}{x+y-2}\)(kết hợp áp dụng bất đẳng thức Bunyakovsky dạng phân thức)
Đặt a + b = s
Ta có: \(\left(s-4\right)^2\ge0\Leftrightarrow s^2-8s+16\ge0\Leftrightarrow s^2\ge8\left(s-2\right)\Leftrightarrow\frac{s^2}{s-2}\ge8\)
Vậy GTNN của P là 8 khi x = y = 2
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\Rightarrow\frac{\left(x+y\right)^2}{2}\le1\Rightarrow x+y\le\sqrt{2}\)
\(A=x+\frac{1}{x}+y+\frac{1}{y}+\frac{x}{y}+\frac{y}{x}+2\)
\(A=x+\frac{1}{2x}+y+\frac{1}{2y}+\frac{x}{y}+\frac{y}{x}+\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}\right)+2\)
\(A\ge2\sqrt{\frac{x}{2x}}+2\sqrt{\frac{y}{2y}}+2\sqrt{\frac{xy}{xy}}+\frac{1}{2}.\frac{4}{\left(x+y\right)}+2\)
\(A\ge4+2\sqrt{2}+\frac{2}{x+y}\ge4+2\sqrt{2}+\frac{2}{\sqrt{2}}=4+3\sqrt{2}\)
\(\Rightarrow A_{min}=4+3\sqrt{2}\) khi \(x=y=\frac{1}{\sqrt{2}}\)
Lời giải :
\(A=\frac{x^2\left(x-1\right)+y^2\left(y-1\right)}{\left(x-1\right)\left(y-1\right)}\)
\(A=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)
Áp dụng BĐT Cô-si:
\(y-1=1\cdot\left(y-1\right)\le\frac{\left(1+y-1\right)^2}{4}=\frac{y^2}{4}\)
Do đó \(\frac{x^2}{y-1}\ge\frac{x^2}{\frac{y^2}{4}}=\frac{4x^2}{y^2}\)
Chứng minh tương tự ta cũng có \(\frac{y^2}{x-1}\ge\frac{4y^2}{x^2}\)
Cộng theo vế 2 BĐT rồi tiếp tục Cô-si ta được :
\(A\ge\frac{4x^2}{y^2}+\frac{4y^2}{x^2}\ge2\sqrt{\frac{16\cdot x^2y^2}{x^2y^2}}=8\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=2\)